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EXECUTIVE SUMMARY 
The purpose of this report is to present the results of our research and development of OKCARS: 

Oklahoma Collision Analysis and Response System. By continuously monitoring traffic 

intersections to automatically detect that a collision or near-collision has occurred, automatically 

call for assistance, and automatically forewarn oncoming traffic, the system has the capability to 

effectively reduce emergency response time, and in turn potentially save thousands of lives and 

millions of dollars each year.  Specifically, we have designed and developed an affordable 

hardware platform consisting of four smart audio visual (SAV) nodes and a cellular modem. 

Each SAV node is equipped with an omnidirectional vision sensor, a microphone array and the 

associated data acquisition board, a compact computer.  For networking of multiple nodes, we 

have also developed a software platform, which is based on the ROS (Robot Operating System), 

an open source software framework for robots and sensors. To meet the critical and challenging 

system requirements, i.e., near real-time video analysis (10+ frames/second) and modest 

computing power, we have developed a vehicle detection and tracking algorithm based on low-

level features and a low-level measure of visual dissimilarity developed to mimic the human 

visual system (HVS), which is demonstrated effective for vehicle tracking for the first time. As 

an alternative and complement detection system, we have developed modules for efficient 

collision sound recognition (mainly based on important audio features Mel Frequency Cepstral 

Coefficients) and localization (mainly based on beamforming). We have shown that fusion of 

data from multiple microphone arrays and/or fusion of results from audio-video subsystems can 

effectively reduce ambiguity and significantly improve detection accuracy. For validating and 

verifying OKCARS and associated algorithms, we have developed a small-scale testbed which 

consists of an arena to mimic traffic environments, an indoor localization system, automated 

radio controlled (RC) cars and our OKCARS. The developed system is non-intrusive, does not 

require specialized in-car equipment, operates using existing 3G communication technologies, 

and is relatively low-cost. It is a significant improvement from traffic monitoring systems 

currently available, where a human analyst has to make decisions by constantly monitoring 

several video stream inputs. Through improvement of service monitoring and emergency 

response preparedness, OKCARS has the potential to enhance roadway traffic safety and 

security. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Objectives 
As drivers, we all fear the possibility of being involved in a traffic accident. We are concerned 

about damages to our vehicles, injuries to our passengers, and injuries to ourselves and others. 

Yet, in the back of our minds, we all have a sense of security that should an accident occur, the 

proper authorities will be there to provide assistance. Unfortunately, for many motor vehicle 

crashes, this assistance arrives too late. 

 When an accident occurs, response time is critical: Every extra minute that it takes for help to 

arrive can mean the difference between life and death. Studies have shown that the number of 

traffic-related fatalities is highly dependent on emergency response time [1]. This fact is 

especially true for states such as Oklahoma in which first responders have a large geographical 

area to cover. According to the World Health Organization, traffic-related injuries represent the 

leading cause in worldwide injury-related deaths, claiming an estimated 1.2 million lives each 

year [2]. Traffic-related injury is among the top-ten causes of worldwide death, a list that 

includes tuberculosis, heart disease, and HIV/AIDS. In the United States, it is estimated that 

vehicle accidents account for over 40,000 deaths and cost over $164 billion dollars each year. 

Among these, passenger-vehicle crashes accounted for the vast majority of deaths [3]. Without 

preventative intervention, these figures are estimated to increase by 65% over the next 20 years. 

 Given these statistics, we put forth the following question: With today’s advanced 

monitoring technology, shouldn’t it be possible to automatically detect if an accident has 

occurred and automatically call for assistance? The ability to reduce emergency response time by 

even a small amount can potentially save thousands of lives and millions of dollars each year. In 

this project, we propose to research and develop such a system which we have titled OKCARS: 

Oklahoma Collision Analysis and Response System. The system consists of video cameras and 

microphones mounted upon traffic posts at intersections. The system operates by continuously 

analyzing the acquired audio and video to extract salient features, determining correspondences 

between auditory and visual regions of interest, and then integrating the data within the regions 

of interest to determine if an accident has occurred. 
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 The specific aims of our system are (1) to reduce the time required for proper assistance (not 

just first responders) to arrive at the scene, and (2) to mitigate further accidents by forewarning 

on-coming traffic. It is important to note that no artificial system can replace the accuracy of a 

human observer. In automated monitoring, there is always the possibility of a false alarm or the 

possibility of failing to detect a true accident. Accordingly, our system uses a combination of 

autonomous and human monitoring. If the system deems that the probability that a collision or 

detrimental near-collision has occurred surpasses a predetermined threshold, the system will 

notify authorities by providing both the probability value and the captured audio and video. 

Then, by viewing and listening to the audio-visual data, a human monitor can pre-screen the data 

and call for appropriate response (e.g., ambulance or fire). We believe this scheme represents a 

logical and feasible tradeoff between sensitivity (low miss rate) and specificity (low false-alarm 

rate). The developed system is non-intrusive, does not require specialized in-car equipment, 

operates using existing 3G communication technologies, is relatively low-cost, does not disrupt 

traffic during maintenance, can provide footage to facilitate accident reconstruction, and has the 

potential to stimulate Oklahoma’s economy by facilitating jobs and industry in wireless 

communication technology. 

1.2 Main Contributions 
• In this project, we have developed four smart audio-video (SAV) sensor nodes. Each of 

them consists of an omnidirectional vision sensor, a microphone array and the associated 

data acquisition board. We have two versions of this omnidirectional vision sensor: 

catadioptric camera and fish-eye camera. We have developed the software to interface 

with the vision in both Windows and Linux OSes. The microphone array consists of 

multiple microphones and a plastic ring which is light and adjustable is radius. Two types 

of data acquisition boards have been tested. One is USB7202 and the other is NI 9234.  

We also developed the software platform for the networking of multiple audio/video 

sensor nodes. The software platform is based on the ROS (Robot Operating System), 

which is an open source software framework for robots and sensors. 

• We have successfully developed a near real-time video-analysis system for accident 

detection. For detection and tracking of the vehicles, our algorithm operates based on 

low-level features and a low-level measure of visual dissimilarity developed to mimic the 
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human visual system (HVS). Low-level features (e.g., color, orientation, size) are used 

because of their low computational complexity. Although HVS models have found 

widespread use in a variety of consumer image processing applications, our work was the 

first to demonstrate the effectiveness of HVS models for vehicle tracking. For accident 

detection, we implemented a real-time version of an existing algorithm. 

• We have tested our algorithm offline on video sequences (saigon01 and saigon02) 

obtained from a traffic intersection in downtown Saigon, Vietnam; these videos do not 

contain collisions, but are useful for verifying the detection and tracking stages. Ground 

truth labels are manually determined for these two videos. Our algorithm achieves a 

detection rate of 90-93% and a tracking rate of 88-92%. We further test our system on a 

database of videos of a mock intersection obtained from our testbed; these videos contain 

both normal driving and collisions. Our algorithm yields an accident detection precision 

of approximately 87.5% on these videos. 

• We have developed an audio data processing flow chart for accident sound detection and 

localization, which includes source separation, accident sound detection and direction of 

the accident sound estimation. The frequency domain blind source separation method 

turns out to be efficient.  Based on our study of the collected online car accident/collision 

sound tracks, important audio features such as Mel Frequency Cepstral Coefficients are 

identified for accident/collision detection, which can provide high detection accuracy. We 

have implemented and tested the method in both simulations and the testbed. We have 

implemented the basic sound localization algorithm on the built microphone array and its 

performance is limited. Several advanced direction of arrival estimation algorithms are 

investigated under different signal and environmental conditions (low and high SNRs, 

single and multiple sources). A fusion algorithm that can handle data from multiple 

microphone arrays has been proposed. A Bayesian audio/video fusion scheme for general 

region of interest detection has been developed. 

• We have developed a small-scale testbed to conduct the experiments that can be used to 

validate our proposed collision detection algorithms. Our testbed has four main parts: an 

arena; an indoor localization system; automated radio controlled (RC) cars; and roadside 

monitoring facilities. First, to mimic traffic environments we built an arena with a 
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wooden floor, mock buildings and streets. Second, to facilitate feedback control for 

trajectory following, an indoor localization system was set up to track the RC cars. Third, 

both autonomous driving RC cars and human driving RC cars were developed based on 

an automated RC car design. The automated RC cars can receive control signals from a 

computer through an Xbee RF module and control the front and rear wheels through 

motors. A new control algorithm was developed to allow the RC cars to track predefined 

trajectories. Finally, the roadside monitoring system is a collection of SAV nodes which 

can collect both the audio and video data from the collision scenario.   

1.3 Report Organization 
The rest of the report is organized as follows. Prior studies on automatic incident detection are 

summarized in Chapter 2 of Literature Review. In Chapter 3, we explain the architecture and 

hardware setup of our proposed system. The video based collision analysis system is presented in 

Chapter 4. The audio based collision analysis system and multisensor/multimodal fusion are 

presented in Chapter 5. In Chapter 6, we present the development and implementation of a small-

scale testbed. We draw the concluding remarks and provide discussion in Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 
Systems for detecting motor vehicles crashes and other traffic incidents are generally referred to 

as Automatic Incident Detection (AID) systems, which are often deployed as part of a broader 

intelligent transportation system (ITS). The earliest work on AID dates back to the 1970s  [4]. 

Since that time, several ITS traffic management systems have employed AID; some notable 

examples include the Los Angeles Freeway Surveillance and Control Project, the John Lodge 

Freeway system, the Tokyo Expressway Control system, and the Tangenziale di Napoli (TANA) 

system. 

Most incident detection systems are based on the macroscopic behavior of traffic flow. 

Traffic is considered as a stream of vehicles, and measurements are made on the global 

properties of the stream. For example, loop detectors are commonly used to measure average 

velocity, flow rate, and average vehicle occupancy. Unusual deviations from these averages are 

then presumed to be an incident. The concept is similar to that of locating a stone in a stream by 

looking for disruptions in water flow. Unfortunately, there are several limitations of this flow-

based approach. 

First, the averaging process introduces a time delay, which in turn, adds to the overall 

emergency response time. Most AID algorithms take several minutes to alert the monitoring 

center. For example, the “California Algorithm 7” technology used in the Los Angeles Freeway 

Project has an average reaction time of 4.5 minutes [5]. Second, even though AID systems which 

rely on flow measurements have proved useful for highways, such systems are not suited for 

intersections which necessarily impose a disruption in flow. For example, the TANA system 

requires a flow of at least 1,000 vehicles per hour and a minimum speed of 37 miles/hour, 

requirements which obviously cannot be met at an intersection. Finally, many AID systems are 

considered flawed. Either they yield too many false alarms, too many missed detections, or they 

are not adaptable to changing environmental conditions. According to [5], “some Departments of 

Transportation have shut down their AID algorithms altogether because of the problems that they 

have had.” 

These limitations have driven recent efforts toward the use of video-based systems, which 

employ video cameras and analysis algorithms to monitor traffic [6-8]. The application of 
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machine vision for traffic monitoring has previously been used mainly for acquiring traffic 

figures such as numbers of vehicles, speed data, and amount of congestion [7]. More recently, 

these techniques have been applied to automatic incident detection [8]. For example, in [9], 

Ikeda et al. propose a video-based system for detecting stopped/slowed vehicles and fallen 

objects. In [10], Veeraraghavan et al. propose the use of a Kalman filter for detecting accident-

prone incidents. In [6], Kamijo et al. employ a spatiotemporal Markov random field for tracking, 

and a Hidden Markov Model for incident detection; this is one of the very few systems designed 

specifically for intersections. 

Yet, despite its promise, video-based AID suffers from one very serious shortcoming: It is 

prone to false alarms when environmental conditions change. For example, rain creates glare and 

reflections which are consequently misinterpreted as vehicles and/or obstructions. Shadows and 

occlusion are particularly problematic for vehicle tracking. Moreover, at nighttime, normally 

reliable features such as shape and color are unavailable. According to [11], changes in 

environmental conditions have been shown to give rise to a false-alarm rate as high as 50-80%. 

A simple and effective solution to these problems is to use other senses beyond just vision. In 

particular, for collision detection, auditory information can be a very important indicator of 

whether a crash has occurred. Typical collisions are accompanied characteristic audio signatures 

which can be detected and localized. When audio is coupled with video, much greater detection 

accuracy can be realized than using either modality alone. This strategy of combining audio and 

video falls under a research thrust known as multimodal fusion. Furthermore, to overcome issues 

related to occlusion and shadows, one can fuse video/audio captured from multiple viewpoints 

(multiviewpoint fusion).  
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CHAPTER 3 

SYSTEM ARCHITECTURE AND HARDWARE SETUP 
As shown in Figure 3.1, the OKCARS consists of a set of Smart Audio-Video (SAV) nodes, 

connected through an 802.3 Ethernet bus. Each SAV node consists of an omnidirectional camera, 

four mini microphones, and a small-form-factor eBox-3850 computer. One of the SAV nodes is 

designated as the master node and has interfaces to a wireless modem to access the cellular 

network for accident reporting purposes and for communicating with a roadside electronic sign 

for alerting. This OKCARS system hardware is reconfigurable and expandable. The minimum or 

basic configuration consists of only one master SAV node, a cellular modem and a roadside 

electronic sign. More SAV nodes can be added to allow an enlarged field of view and improved 

accuracy through multiviewpoint fusion. This system can be seamlessly integrated into the 

existing infrastructure of many intersection control and management systems. 

eBox-3850 
Computer 

Cellular 
Modem Roadside 

Electronic Sign 

Omnidirectional 
Camera and 

Microphone Array 

Ethernet 

SAV Node 
 

 

 

 

 

 
 

 

Figure 3.1 The overall architecture of OKCARS 

3.1 Development of the Visual Sensor Node 
Two different types of cameras are used, which include catadioptric cameras and fish-eye 

cameras. Both are omni-directional cameras. The catadioptric camera consists of a hyperbolic 
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mirror and a Firefly MV sensor from Point Grey Research. The fish-eye camera is a surveillance 

camera named Q24 from Mobotix Company.  

The cameras are shown in Figure 3.2. For the purpose of real-time processing, we develop 

the C/C++ interface for the cameras to obtain the data without the software provided by the 

companies, and then to process the data using open source libraries such as ROS and OpenCV. 

 

Figure 3.2 The catadioptric camera (left) and the fish-eye camera (right) 

3.1.1 Catadioptric Camera 

Similar to most catadioptric optical systems, the catadioptric camera consists of two parts: the 

small and affordable imaging camera Firefly MV and the hyperbolic mirror. A mini USB2.0 

interface is provided for the data transmission and power supply. The FlyCapture software 

development kit (SDK) is provided by the company. So we use it directly to obtain the raw data 

from the camera. First we need to add the FlyCapture library to the project path so we can use 

the functions and then we put the obtained image in the RAM and then different algorithms can 

be applied on the raw data. We use the OpenCV library for video processing. 

One problem for the catadioptric system is that the original image captured from the camera 

is distorted as shown in Figure 3.3, which is not convenient for image processing. So a simple 

algorithm is developed to unwrap the distorted image to a panoramic image. The algorithm is 

based on the projection from a ring area to a rectangle area. The result is shown in Figure 3.4. It 

can achieve a frame rate of around 4 fps with a resolution of 1280 x 960 (original) and 2500 x 

330 (unwrapped) pixels which ensures real-time processing. The unwrapped images contain a 
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360 degree view of the environment which enables the robots to perform some tasks better, such 

as searching and navigation. 

 

 
Figure 3.3 The ring area for undistortion of catadioptric camera 

 

 
Figure 3.4 Image from the camera after unwrapping 

3.1.2 Fish-eye Camera Q24 

The fish-eye camera (Q24) is capable of providing four different views simultaneously. The 

panoramic view is selected so that it can cover the surrounding area of the mobile platform. The 

camera provides a highest resolution of 3 Megapixels and color images scalable from 160 x 120 

to 2048 x 1536, and it uses an Ethernet-based interface. The features of the camera (including 

resolutions, frame rates, etc.) can be easily adjusted by sending a web request. Moreover, the 

zooming and panning of the camera lenses can be done by the virtual PTZ function. The camera 
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itself is a web server so that the stream of live images can be obtained by setting up a socket 

connection. 

The Q24 camera is a commercial product for the purpose of security and surveillance so the 

SDK for the camera is not available. Our solution to get the raw images from the Q24 camera is 

to use the Libcurl library to establish an Internet connection to grab the current image from the 

web server. Libcurl is a free and easy-to-use client-side URL transfer library, supporting 

different Internet protocols and services. Libcurl is highly portable, and it builds and works 

identically on numerous platforms. In this way, we can store the image in the RAM of the 

computer. After that, different algorithms can be applied on the raw data. Here we use OpenCV 

library for the vision processing. It can achieve a frame rate of around 7-8fps with a resolution of 

800 x 600 pixels which ensures the real-time processing. 

3.2 Development of the Microphone Array 
The audio part of the audiovisual node is shown in Figure 3.5. The hardware platform supports 

up to 8 channels microphones. The DAQ (Data Acquisition Equipment) in the platform supports 

maximum 100 KSamples/second throughput sampling rate, or 50 KSamples/second on any one 

channel. The DAQ USB-7202 used in this project is a general purpose DAQ. Therefore, a 

preamplifier board is designed to amplify the signal acquired from the microphones and output to 

the DAQ. An example code based on C++ is developed to read the data from USB-7202. The 

code also provides a Matlab interface to call Matlab functions. 

 

 

Figure 3.5 The audio part of a prototype of the SAV node 
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3.2.1 The USB-7202 DAQ  

USB-7202 is a USB bus-powered DAQ module with eight, 16-bit analog inputs and eight digital 

I/O lines; for Message-Based DAQ - Designed for OEMs.  

• 8 channels of 16-bit analog input 

• 100 kS/s max total throughput (200 kS/s Burst Mode), 50 kS/s on any one channel 

• 8 digital I/O lines 

• One 32-bit event counter 

• Simultaneous sampling (1 A/D converter per input) 

• Stackable 3.55" x 3.75" board dimensions 

• Develop on one computing platform, deploy on many with out-of-the-box support 

for Windows® and Linux® 

• Simple messaging protocol 

• Small software footprint 

• Included accessories: USB cable and a CD containing the DAQFlex DAQ 

Software API, a Windows® installer file (msi), and a Zip file containing 

installation files for Linux® operating systems 

• RoHS compliant 

3.2.2 Design of the Microphone Array  

Figure 3.6 shows the simplified block diagram of the hardware platform. 

 

 

 

USB-7202
DAQ

Microphone 
Array PC

USB

USB bus-powered

Preamplifier
Unit

 
 

Figure 3.6 The Block Diagram of the Microphone Array Platform 

http://www.mccdaq.com/images/photos_500/usb-7202-stacked-rf_500.jpg
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3.2.3 Steps to Use the Microphone Array  

1. Install USB driver and software MCC 7000 (DAQ Software ver 1_3_0_0.ZIP). 

2. Connect the preamplifier unit board to the USB DAQ as shown in Figure 3.7 and Table 

3.1. 

3. Connect the microphones to the input of the preamplifier unit. Make sure the positive pin 

of the microphone connect to IN* and the negative pin connect to GND as shown in 

Figure 3.8.  

4. Power on the hardware platform. Plug the USB cable to the PC.  

5. Read the sampling data. 

 

 

 

   
USB-7202 DAQ                                                      Preamplifier unit 

Figure 3.7 Pins definition of DAQ and preamplifier unit 

 
Table 3.1 Pins connection 

DAQ Pre Unit DAQ Pre Unit DAQ Pre Unit DAQ Pre Unit 

1 16 6 11 11 6 16 1 

2 15 7 10 12 5 39 34 

3 14 8 9 13 4 40 33 

4 13 9 8 14 3   

5 12 10 7 15 2   
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Figure 3.8 The polarity of the microphone  
 

We also developed a flexible ring mount for the microphones. This improved microphone array 

is shown in Figure 3.9. 

 

Figure 3.9 The audio part of the SAV node: the microphone arrays on a flexible ring 

3.3 FitPC2 
The FitPC2 is used as the computation engine for the integrated SAV node. The FitPC2 is a 

small, light netbook computer which includes an Intel Atom Z5xx Silverthorne processor 

(1.1/1.6/2.0 GHz options), up to 2GB of RAM and 160GB SATA Hard Drive. We run the 

Ubuntu Linux OS on this FitPC2 and the Robot Operating System (ROS) to provide the 

networking capability. 

3.4 Integration of the Smart Audio Visual Sensor Node 
Finally we integrate both the audio and video part to make a whole node which is shown in 

Figure 3.10. 

 

Positive 

Negative 
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Figure 3.10 The prototype of the vision/audio sensor node 

3.5 Communication 
The cellular modem will deliver a video clip of the suspected collision or near-collision to a 

remote computer located in a control center monitored by local authorities. 

  

FitPC2 

DAQ 

Board 

Omnidirectional 

Vision Sensor 

Microphone 

Array 



 
 

15 
 
 

CHAPTER 4 

VIDEO BASED ACCIDENT ANALYSIS 
An important stage in an automatic vehicle monitoring system is the detection of accidents via 

video analysis. By analyzing frames of the captured video, it is possible to track the movements 

of vehicles. With such tracking, data about the vehicles, such as speed, change in speed, and 

change in orientation, can be determined. Finally, these data can be used to estimate the presence 

of an accident (collision). 

 In this chapter, we describe the video-analysis portion of the accident detection system that 

was researched and developed in this project. Figure 4.1 shows a block diagram of the system. 

4.1 General Approach 
As shown in the Figure 4.1, image sequences are obtained from the video camera mounted on a 

pole at the traffic intersection. The image sequences are fed to the accident detection system 

where the occurrence of an accident is determined. The accident detection system consists of the 

following stages: (1) vehicle detection, (2) features analysis, (3) vehicle tracking, and (4) vehicle 

 

Figure 4.1 Overview of the video analysis portion of the accident detection system 



 
 

 
 

 

Figure 4.2 Block diagram of the processing performed during the vehicle detection stage 

parameter extraction and accident detection.  

 In addition to the image input, some side information is input to the system: the stored 

background image, threshold values for the image processing, information about the position and 

orientation of the camera, camera calibration parameters, and frame rate of the video sequence. 

After analyzing the image sequence, the system identifies the moving vehicles in the image and 

tracks them using low-level features. After the vehicles are tracked in each frame, the speed, 

orientation, position, and area of each tracked vehicle are used to estimate the occurrence of an 

accident. If an accident is detected, the system signals the detection to a monitoring station.  

4.2 Vehicle Detection 
Vehicle detection is an important stage of the accident detection system in which the moving 

vehicles are segmented from the background. Figure 4.2 shows a block diagram of the vehicle 

detection subsystem.  

The method that is used for detecting moving vehicles is background subtraction, a very 

computationally efficient technique. Because our research has focused on real-time video 

analysis, other background modeling techniques that have high computational cost were 

attempted, but not actually employed. Because the testing of the algorithm was done offline, and 
16 
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Figure 4.3 Left: Input frames. Middle: Static blank background. Right: Result of subtraction 

because the position of the camera was fixed, we used a stored background frame for use in 

background subtraction. After the vehicle regions are detected, suitable low-level features are 

extracted from the vehicle regions. The process of vehicle detection is explained in detail in the 

following sections.  

4.2.1 Background Subtraction 

The first step in the vehicle detection algorithm is to subtract the background from the current 

input frame to detect the vehicles. Figure 4.3 shows examples of background subtraction method. 

Here, a frame at time t from the input video along with the previously acquired background 

frame (containing no vehicles) is fed as input to the algorithm. The algorithm subtracts the 

intensity value of each pixel in the frame It(x,y) from the background image Ibk(x,y) resulting in a 

difference image Idiff(x,y) given by 

𝐼𝑑𝑖𝑓𝑓(𝑥, 𝑦) = |𝐼𝑡(𝑥,𝑦) − 𝐼𝑏𝑘(𝑥,𝑦)| 
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 As mentioned, this background subtraction step is performed to detect moving objects                                                                          

since the static objects are part of background. Thus, we are left with the intensity values of 

moving objects in the difference image Idiff(x,y).  

 

  

 

Figure 4.4 Thresholding and morphological processing are used to obtain a binary map of vehicle pixels 

 

Figure 4.5 Connected components labeling is used to segment the binary map and assign a unique label to 
each detected vehicle 
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4.2.2 Thresholding and Morphological Processing 

The difference image Idiff(x,y) is converted into a binary image bw(x,y) using a specific threshold 

value T as follows: 

𝑏𝑤(𝑥, 𝑦) = �
1, 𝐼𝑑𝑖𝑓𝑓(𝑥,𝑦) ≥ 𝑇
0, 𝐼𝑑𝑖𝑓𝑓(𝑥,𝑦) < 𝑇 

The value of T was empirically chosen to be 0.1. 

 The binary image bw(x,y) obtained from thresholding suffers from noise and unwanted 

pixels. Therefore, the morphological operations of opening followed by closing are applied to the 

binary image bw(x,y) to obtain a final binary image bwfinal(x,y). Figure 4.4 shows the 

thresholding and morphological processing operations on example frames. The final binary 

image bwfinal(x,y) indicates pixels corresponding to detected vehicles.  

4.2.3 Connected-Component Labelings and Region Extraction 

The regions in the binary image bwfinal(x,y) are labeled using connected-components labeling. 

This process assigns a label to each region in the binary image (see Figure 4.5). From this 

process, the number of vehicles detected in the image is estimated. After connected-components 

labeling, the binary map is used to guide analysis of the original input frame It(x,y); we 

specifically focus only on those regions in which the vehicle are detected. 

4.3 Feature Extraction 
After the regions containing vehicles are detected, suitable low-level features are extracted from 

these vehicle regions. Five features are used: area, centroid, orientation, luminance, and color. 

These features were chosen due to their low computational complexity. Let Xi {i= 1, 2, 3...} 

denote the individual vehicle regions detected in the input image It(x,y), and let fk(Xi) denote the 

kth feature.  

4.3.1 Bounding Box 

From the connected component labeled image, the bounding-box coordinates of each vehicle 

region are calculated. From the bounding-box coordinates, the height and width information of 

the vehicle region is estimated. These bounding-box coordinates are used to calculate the 

features of a particular vehicle region. Figure 4.6 shows an example of extracted vehicle regions.  
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Figure 4.6 Vehicle regions are extracted from each frame via multiplication with the frame’s corresponding 
binary map. 

4.3.2 Area 

Let f1(Xi) denote the area of region Xi. Area is defined as the total number of pixels N in the 

region Xi. The expression for f1(Xi) is given by 

𝑓1(𝑋𝑖) = 𝑁 ∈  𝑋𝑖 

The area of a particular vehicle region is given by the number of white pixels in the binary map 

of each vehicle (see Figure 4.6). 

4.3.3 Centroid 

Let f2(Xi) denote the area of region Xi. The centroid is defined as the center of mass of the region 

Xi. The expression for f2(Xi) is given by 

𝑓2(𝑋𝑖) =  �
𝑥1 + 𝑥2 + ⋯𝑥𝑛

𝑁
,
𝑦1 + 𝑦2 + ⋯𝑦𝑛

𝑁
� =  (𝑥,� 𝑦�) 



 
 

21 
 
 

 

Figure 4.7 The centroid of each vehicle is estimated based on the detected vehicle regions 

where x1, x2,…. xn denote the points along the horizontal plane of the image and y1, y2,…. yn  

denote the points along the vertical plane of the image. Figure 4.7 shows an example of the 

centroid of vehicle regions.  

4.3.4 Orientation 

Let f3(Xi) denote the orientation of region Xi. The orientation is determined by the bounding box 

of each vehicle region. Orientation is defined as the angle in degrees between the x axis and 

major axis of the ellipse that has the same second moments as region Xi. Figure 4.8 illustrates the 

orientation of a vehicle region. Figure 4.8 (left) shows a vehicle region and its corresponding 

ellipse. Figure 4.8 (right) shows the same ellipse, with features indicated graphically; the solid 

black lines are the axes. The orientation is given by the angle between the horizontal dotted line 

and the major axis of the ellipse.  

The expression for f3(Xi) is given by 
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𝑓3(𝑋𝑖) =  �

1
2
𝑐𝑜𝑡−1 �

𝑎 − 𝑐
𝑏

� , 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 < 𝑐
𝜋
2

+
1
2
𝑐𝑜𝑡−1 �

𝑎 − 𝑐
𝑏

� , 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 > 𝑐
 

where a, b is the semi-length of the of the major axis and minor axis of the ellipse, respectively 

and 𝑐 = √𝑎2 −  𝑏2 .  

4.3.5 Luminance and Color 

Let f4(Xi) and f5(Xi) denote the average luminance and average color of the region Xi. These two 

features are given by  

𝑓4(𝑋𝑖) =  𝐿∗� (𝑋𝑖) 

 𝑓5(𝑋𝑖) = �𝑎∗���(𝑋𝑖),𝑏∗���(𝑋𝑖)� 

where 𝐿∗� ,𝑎∗���, 𝑏∗���  denote the average 𝐿∗,𝑎∗, 𝑏∗ measured in the CIE 1976 (𝐿∗,𝑎∗, 𝑏∗) color space 

(CIELAB). The value of L* ranges between 0 and 100, while the values of a* and b* ranges 

between negative to positive values. Figure 4.9 shows the RGB image converted to L* a* b* color 

space.  

4.3.6 Feature Vector 

All the above features discussed earlier are grouped together in a feature vector of a particular 

region Xi. The feature vector is given as ft(Xi)  

𝒇𝑡(𝑋𝑖) =  [𝑓1(𝑋𝑖),𝑓2(𝑋𝑖),𝑓3(𝑋𝑖),𝑓4(𝑋𝑖),𝑓5(𝑋𝑖)] 

Examples of regions extracted from a frame and the corresponding feature values are shown in 

Figure 4.10. 
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Figure 4.8 The orientation of each vehicle is estimated via ellipse-fitting on the detected vehicle regions 

Figure 4.9 The lightness and color of each vehicle is estimated via an RGB to CIELAB color-space 
conversion on each frame followed by averaging the L*, a*, and b* values within each vehicle region  
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Features (a) (b) (c) (d) (e) (f) (g) 

Area (pixels) 237 1208 217 56 220 1455 1382 
Centroid  
(pixel) 

𝑥̅ 44 89 84 200 195 190 299 

𝑦� 25 78 178 171 73 15 67 
Orientation (degrees) -22.5 -10.5 -15.7 57 44 -5.1 -13 
Luminance 64 83.1 61 67.7 69.8 56.5 69.2 
Color 𝑎∗��� 1.06 -0.1 -0.21 3.72 1.3 -0.4 0.4 

𝑏∗��� -0.78 -0.4 1.26 -0.83 -0.15 -2.1 -0.2 

Figure 4.10 Extracted vehicles from a particular frame and table of feature values 
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4.4 Human Visual System (HVS) Model Analysis 
The features described in the previous section can assist in tracking vehicles across multiple 

frames. However, these features do not explicitly take into account the overall visual appearance 

of each vehicle as gauged by the human eye. To model this aspect, we employ a visual similarity 

estimator, called MAD (Most Apparent Distortion) [12]. Given two images or image regions, 

MAD will return an index which is proportional to how dissimilar the two images appear to a 

human observer. MAD operates by using a combination of a visual detection model and a visual 

appearance model. The detection-based stage models of the human contrast sensitivity function, 

luminance masking, and contrast masking to gauge subtle (near-threshold differences). The 

appearance-based stage employs a log-Gabor transform and local comparisons of log-Gabor 

coefficient statistics in an attempt to model the visual appearance of clearly visible differences. 

The MAD index is computed via a weighted geometric mean of these two model outputs. 

 Here, we use MAD to assist in tracking by searching for the vehicle in the next frame that 

mostly closely matches (i.e., yields the lowest MAD index) for a given vehicle in the current 

frame. Specifically, after the regions in the frames It and It+1 are detected, they are subjected to 

MAD analysis. In this step each of the regions Xi {i= 1, 2, 3...} frame It are compared one-by-

one with each of the regions Xj {j= 1, 2, 3...} in frame It+1. Thus the regions in It forms the first 

input to MAD algorithm and the regions in frame It+1 form the second input to MAD algorithm.  

 The output for each comparison is denoted by dMAD(Xi, Xj). If a particular region in frame 

It+1 matches with a region in frame It, MAD should yield an index close to zero, meaning that 

the vehicles detected in frame It+1 and It are the same. Examples of MAD analyses are shown in 

Figure 4.11 and Figure 4.12. The regions have been resized to a common size (of at least 64x64 

pixels) as required by MAD. A lower MAD index denotes a closer visual match between the 

vehicles. As demonstrated in Figure 4.12, MAD can yield decent matching results even when 

some features of the regions are of deficient (such as color and luminance). 

4.5 Vehicle Tracking 
The tracking is done via corresponding via: (1) Searching for the region in frame It+1 whose 

features most closely match the features of the given region in frame It and (2) searching for the 

region in frame It+1, with the lowest MAD index as compared to the given region in frame It. 
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(a) (b) 

 
(c) 

Figure 4.11. Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for 
different vehicle comparisons—smaller values denote closer matches. 
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(a) (b) 

 
(c) 

Figure 4.12 Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for 
different vehicle comparisons—smaller values denote closer matches 
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4.5.1 Feature Distance 

In this step the feature vector of the regions extracted from frames It and It+1 are used. For the 

purpose of tracking the vehicles accurately across each frame, we use the Euclidean distance 

between the feature vector of each region Xi {i= 1, 2, 3...} in It and the feature vector of each 

region Xj {j= 1, 2, 3...} in It+1.  

 Let ft(Xi) denote the feature vector of the ith region extracted from frame It and let ft+1(Xi) 

denote the feature vector of the jth region extracted from frame It+1. Let dfeatures(Xi, Xj) denote the 

distance between ft(Xi) and ft+1(Xi), which is given by 

𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠�𝑋𝑖,𝑋𝑗� = ��𝒇𝑡(𝑋𝑖, ) − 𝒇𝑡+1�𝑋𝑗��
2
 

Thus, the smaller the value of dfeatures(Xi, Xj), the more the two vehicle regions (Xi and Xj) match 

in terms of area, centroid, orientation, lightness, and color. 

4.5.2 Weighed Combination of Feature Distance and MAD analysis 

The above equation for dfeatures(Xi, Xj) provides one measure of dissimilarity between vehicle 

regions in frame It and It+1. This dissimilarity measure can be improved by combining 

dfeatures(Xi, Xj) with a MAD index dMAD(Xi, Xj) to compute an overall dissimilarity measure 

between the vehicle regions. For this purpose dfeatures(Xi, Xj) and dMAD(Xi, Xj) are combined 

using weights. The overall similarity measure d (Xi, Xj) is given by: 

𝑑�𝑋𝑖,𝑋𝑗� =  𝛼𝑑𝑀𝐴𝐷�𝑋𝑖,𝑋𝑗� + (1 − 𝛼)𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠�𝑋𝑖,𝑋𝑗� 

where α is the weighting factor. The value of α was empirically chosen to be 0.9. Finally the 

closest matching between vehicle regions in frame It and frame It+1 is determined by searching 

for the minimum value resulting from the weighted combination output d (Xi, Xj) and is given by 

𝑗∗ = arg𝑚𝑖𝑛𝑗 �𝑑�𝑋𝑖,𝑋𝑗�� 

 Tracking is done typically between two consecutive frames It and It+1. Figure 4.13 shows 

results of this technique for two representative frames. 
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Frame at time t. Frame at time t+1. 

  
Extracted vehicles from frame at t. Extracted vehicles from frame at t+1. 

 
Matches based on minimum distance. 

Figure 4.13 Overall measured d for matched vehicles in two consecutive frames 

  Since the tracking is done between two consecutive frames at a time, for rest of the instances 

of the system, the information of the vehicles in frame It+1 are carried over to the next tracking 

step between frames It+1 and It+2, and thus it is not to extract the vehicle information in frame 

It+1, since this information is already computed in the previous step, thus saving time and 

computation. In subsequent steps, the vehicle information in the upcoming frames (It+2, It+3, It+4, 

…) are extracted and are compared with the vehicle information obtained in the previous frames 

(It+1, It+2, It+3, ...) to track the vehicle as explained earlier. For the purpose of tracking, when the 

vehicle information computed in the previous frames (e.g., It+1) are carried over in the next step, 
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the vehicles in It+1 are labeled in the order they occurred in the frame It and then compared with 

the vehicle information in the frame It+2, thus the system will be able to know which vehicle it is 

tracking. This process is repeated for the upcoming frames.  

 If a match for a particular vehicle region in frame It cannot be found in the frame It+1, the 

vehicle is assumed to have left the scene, and thus the vehicle is no longer tracked and its 

information is not carried over to the next step. Similarly, if a new vehicle region is detected in 

frame It+1, the features of the vehicle are extracted and used for tracking in the upcoming frames.  

 Specifically, when searching for the minimum index from the overall similarity measure 

d(Xi, Xj), to find the matching vehicles between frames It and It+1, suppose a vehicle found in 

frame It has left the scene in frame It+1. In this case, the system still tries to find the closest 

matching vehicle in frame It+1 corresponding to a vehicle region in frame It , which is not a true 

match of the vehicle in It since it has left the scene in It+1, but this scenario is unknown to the 

system. In order to overcome this situation, when the system finds a false match to a vehicle in 

It, the area and centroid position of the vehicle in search belonging to It is compared to the 

falsely matched vehicle in It+1. Since they are false matches the Euclidean distance between the 

area and centroid of these vehicles should be larger than some predefined threshold value. If this 

condition is satisfied, the system is informed that there was a false match and instructed that the 

vehicle under search has left the scene.  

 There may also be situations in which the Euclidean distance may be lesser than the 

threshold value. In these cases, other features such as the orientation and color information of the 

vehicles are used in addition to the area and centroid. Since the comparisons between the 

vehicles are done between consecutive frames, the area and centroid information of the vehicles 

are effective in finding the false matches in most of the cases. Similarly, when a new vehicle 

region is detected in It+1 but not previously detected in It, the scenario of false matches cannot be 

encountered since the system searches for close matches only for the vehicles belonging to It in 

It+1.          

 Examples of tracked vehicles across nine frames are shown in the Figure 4.14. A colored 

rectangle is drawn around each vehicle. It can be seen that the color of the rectangle around each 

vehicle across the frames remains the same, indicating that the vehicles are detected and tracked 

correctly.  
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Figure 4.14 Vehicle tracking across nine consecutive frames. The color of each rectangle denotes the same 

vehicle across different frames 

4.6 Computation of Vehicle Parameters 
After the vehicles are detected and tracked, vehicle parameters such as speed and trajectory are 

computed using some of the features extracted during tracking.  

4.6.1 Speed of the Vehicles 

The speed of a particular vehicle region Xi in frame It is computed using the distance traveled by 

the vehicle in frame It+1 and the frame rate of the video from which the image sequence are 

extracted. The distance traveled by the vehicle is computed using the centroid positions of the 

vehicle in It and It+1. 
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 Let Xi denote a particular vehicle detected in It, and Xj denote the same vehicle detected in  

It+1, assuming the correspondence between the vehicles is determined using the vehicle tracking 

stage. The speed of a particular vehicle region Xi is given by: 

𝑆𝑝𝑒𝑒𝑑(𝑋𝑖) =
��𝑥̅(𝑋𝑖)−𝑥̅�𝑋𝑗��

2
+�𝑦�(𝑋𝑖)−𝑦��𝑋𝑗��

2

1
𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒

  

The above equation gives the speed of the vehicle in terms of pixels/sec. In order to determine 

the speed of the vehicle in terms of real-world units (miles/hr), a camera calibration process is 

used. Based on the calibration mapping, the centroid positions of a particular vehicle in It and 

It+1 are converted from pixel coordinates to real-world coordinates. From this step, the speed of 

the vehicle in terms of (miles/hr) is determined. A similar process is repeated for all the vehicle 

regions detected and tracked. As an example, for 15 frames/sec video, the speed of three vehicles 

(in pixels/second) are computed as follows: 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑎) =
3.16 𝑝𝑖𝑥𝑒𝑙𝑠
1

15 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 47.4 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑏) =
4.48 𝑝𝑖𝑥𝑒𝑙𝑠
1

15 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 67.2 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑐) =
2.83 𝑝𝑖𝑥𝑒𝑙𝑠
1

15 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 42.45 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐 

Since the camera is assumed to be parallel to the ground plane, a scaling factor was obtained by 

comparing the known vehicle width and height with the pixel width and height of the vehicle as 

found in the image sequence. The scale factor that relates pixel distance to real-world distance 

was approximately found to be (1 pixel ≃ 0.00001 km). The speed of the vehicle is in terms of 

miles/hr is then given by: 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑎) = 11 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑏) = 15 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑐) = 10 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟 

These speeds are typical of vehicles at traffic intersections. Therefore the assumption of the 

camera placed parallel to the ground plane to capture the video holds good in this case. 
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Frame at time t. Frame at time t+1. 

 
Estimated trajectory for each vehicle. 

Figure 4.15 Vehicle trajectories are estimated by connecting the centroids of tracked vehicles across 
multiple frames. 

4.6.2 Trajectory of the Vehicles 

Similar to finding the speed of the vehicles, the trajectories of the vehicles are also estimated 

using the centroid information of the vehicles in frame It and It+1. A line fit is made connecting 

the centroid of a particular vehicle detected and tracked correctly in It and It+1 from the instant 

the vehicle enters the scene until it leaves the scene. Figure 4.15 illustrates the vehicles’ 

trajectories obtained for frame It to It+n.  

4.7 Accident Detection System 
After the parameters are extracted, the next step is to determine the occurrence of an accident by 

using the parameters. We employed the algorithm of Ki and Lee [13] for the implementation of 

the accident detection system. Figure 4.16 shows a flowchart of the accident detection algorithm. 
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Figure 4.16 Flowchart of the Accident Detection Algorithm 

4.7.1 Variation in Speed of the Vehicles 

The speed of a vehicle is an important factor toward determining the occurrence of crashes at a 

traffic intersection. A rapid change in speed is a useful descriptor for a traffic accident. For 

example, if a particular vehicle travels with a particular velocity, after an occurrence of an 

accident, there is rapid change in the velocity. Therefore variation in the velocities of the 

vehicles across frames is used as a factor for estimating the occurrence of crashes by the system. 

In the accident detection system, vehicles are detected and tracked correctly and their velocity 

information is extracted at each frame the vehicle occurs.  

 After successful tracking of a vehicle in two consecutive frames It and It+1, the velocity 

information of the tracked vehicle obtained from It and It+1 is compared with that obtained from 

It-1 and It. Since it is assumed that the vehicles moves at an approximately constant velocity, if a 

vehicle crashes with another vehicle in frame It+1, the velocity of the vehicles is expected to go 

down drastically. So when the velocity of the vehicle determined in It+1 is compared with that 
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obtained in It, there should be a large difference in the velocity of the vehicle indicating that a 

crash has occurred. Thus, to determine the occurrence of an accident, the difference in velocity 

of vehicles obtained between two consecutive frames is compared with a predefined threshold: 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  ∆𝑣 = 𝑣 𝑎𝑡 𝐼𝑡+1 −  𝑣 𝑎𝑡 𝐼𝑡. The following expression is used for the 

traffic accident detection algorithm:  

𝑉𝐼 = 𝑓(𝑥) = � 1,      𝑖𝑓 ∆𝑣 ≥ 𝑎
  0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

where VI is the velocity index and a is the speed threshold. Figure 4.17 shows a scenario for 

accident detection.  

4.7.2 Variation in Area of the Vehicles 

A rapid change in the area of the vehicles is also used to aid in accident detection. When an 

accident occurs, two vehicles come into contact and there is a possibility that the bounding box 

of the vehicles may intersect; in this case, there is a rapid change in the area of the vehicles 

detected. To detect accidents, the area of the vehicles detected and tracked in It and It+1 are 

compared; if the change in area of the vehicles exceeds an area threshold, then there may be 

possibility of accident: Change in area= ∆area=area at I_(t+1)- area at I_t. Thus, the following 

expression is used as a factor for traffic accident detection: 

𝐷𝐼 =  � 1, 𝑖𝑓 ∆𝑎𝑟𝑒𝑎 ≥ 𝑏
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

where DI is the area index and b is the area threshold. Figure 4.18 shows a scenario for accident 

detection using the change in area.  
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Figure 4.17 Illustration of accident detection by identifying rapid changes in speeds 

Figure 4.18 Illustration of accident detection by identifying the change in area that occurs when two 
vehicles are detected as a single, combined vehicle 
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4.7.3 Variation in Position of the Vehicles 

Change in the centroid position of the vehicles in frames It and It+1 can be used as a factor to 

determine the occurrence of accident. As with the change in area, when an accident occur,s the 

bounding boxes of two vehicles intersect, causing a change in the estimated positions of the 

vehicles. Therefore a change in the centroid of a vehicle in consecutive frames can be used as a 

descriptor to determine the occurrence of an accident. The change in centroid is given by: 

∆𝑥̅ = 𝑥̅ 𝑎𝑡 𝐼𝑡+1 −   𝑥̅ 𝑎𝑡 𝐼𝑡 

∆𝑦� = 𝑦� 𝑎𝑡 𝐼𝑡+1 −   𝑦� 𝑎𝑡 𝐼𝑡 

The following expression is used as a factor for traffic accident detection: 

𝑃𝐼 =  �1, 𝑖𝑓 ∆𝑥̅  ≥ 𝑐, 𝑖𝑓 ∆𝑦�  ≥ 𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where PI is the position index and c,d are thresholds. 

4.7.4 Variation in Orientation of the Vehicles 

Variation in orientation of the vehicles can also be used as a factor to determine the occurrence 

of an accident. As in the case of speed, area, and centroid, the orientations of a particular vehicle 

in frames It and It+1 are compared: 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  ∆𝛳 = 𝛳 𝑎𝑡 𝐼𝑡+1 −  𝛳 𝑎𝑡 𝐼𝑡 . The 

orientation index OI is given by: 

𝑂𝐼 = �1, 𝑖𝑓 ∆𝛳 ≥ 𝑒
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

where e is the threshold for change in orientation of the vehicles. 

4.7.5 Overall Accident Index 

After computing the velocity, area, position, and orientation index of the vehicles, the overall 

accident index is determined by the sum of individual indices. The overall accident index is then 

compared with a preselected threshold to determine the occurrence of accident. If the accident 

index exceeds the threshold, then an occurrence of accident is signaled, otherwise the system 

determines that there is no accident and the process is repeated until an accident is detected. The 

overall accident index (AI) is given by: 

𝐴𝐼 = 𝑉𝐼 + 𝐷𝐼 + 𝑃𝐼 + 𝑂𝐼  
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The occurrence of accident is determined by: 

𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 = � 1, 𝑖𝑓 𝐴𝐼 ≥ 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

The accident detection algorithm is summarized as follows: 

1. Vehicle regions are detected in image frames.  

2. Low-level features such as area, orientation, centroid, luminance and color of the 

detected vehicles are extracted. 

3. Vehicles are tracked using the tracking algorithm. 

4. Speeds of the tracked vehicles are calculated. 

5. Velocity, Area, Position and Orientation Indexes are calculated. 

6. Overall Accident Index is calculated using the sum of individual indexes and occurrence 

of accident is identified.  

4.7.6 Locating the Accident 

Upon the occurrence of an accident, the next step is to locate the point at which the accident has 

occurred. This information can be obtained by using the positions of the vehicles that were 

involved in the accident at a particular frame. By using this information, the end user is not only 

informed about the occurrence of the accident, but the user is also provided the point at which 

the accident has occurred within the recorded video clip. This location information can be used 

by the end-user’s display software to direct the user’s attention to the crash location. This 

location information can also be used to encode the recorded video, for example, via region-of-

interest encoding to facilitate rapid transmission of the video over lower-bandwidth networks 

(e.g., 3G networks). 

4.8 Improving Matching Robustness via F-MAD 
To better deal with motion blur and shadows, we recently developed a new feature-based image 

quality assessment algorithm. Our goal was to use features which are robust to changes in shape 

and lighting, and are therefore less sensitive to occlusions and shadows which can degrade the 

vehicle detection performance.  

 We specifically developed a feature-based variant of MAD—called F-MAD—which uses 

five feature maps: sharpness, luminance, edge strength, color distance, and contrast. All five 
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features maps are combined in order to accomplish the work of MAD by calculating the peak 

signal to noise ratio between feature maps of the two to-be-compared vehicle images. The 

following subsections described the computation of the features. In this discussion, let 𝑋 denote 

an image containing a vehicle, and 𝑥 denote a block of 𝑋. Let 𝑓𝑖(𝑥) denote a feature 

measurement for block 𝑥, and let 𝑓𝑖(𝑋) denote the corresponding feature map. 

4.8.1 Lightness and Color Distance 

Let 𝑓1(𝑥) denote the Euclidean distance between the average lightness of block 𝑥 and the 

average lightness of the image. Let 𝑓2(𝑥) denote the Euclidean distance between the average 

color of block 𝑥 and the average color of the image. These two features are given by: 

𝑓1(𝑥) =  |𝐿�∗(𝑥) − 𝐿�∗(𝐵)| 

𝑓2(𝑥) =  �[𝑎�∗(𝑥) − 𝑎�∗(𝐵) ]2 +  [𝑏�∗(𝑥) − 𝑏�∗(𝐵) ]2 

where 𝐿�∗, 𝑎�∗, 𝑏�∗denote the average L∗, a∗, b∗ measured in the Commission Internationale de 

i’Eclairage (CIE) 1976 (L∗, a∗, b∗) color space (CIELAB). Let R’, G’, B’ denote the nonlinear 

RGB values of the image, the conversion from RGB color space to L∗a∗b∗ is implemented by 

first linearizing the R’, G’, B’ values to be proportional to light energy, assuming sRGB values: 

𝐴 =  �
𝐴′

12.92
,                                           𝐴′ < 0.04045

[(𝐴′ + 0.055)/1.055]2.4, 𝐴′ > 0.04045
 

where 𝐴 = 𝑅, 𝐺, or 𝐵. 

 The linearized 𝑅, 𝐺, 𝐵 values are then converted to the CIE XY Z color space as: 

𝑋 = 0.412453 ∗ 𝑅 + 0.357580 ∗ 𝐺 + 0.180423 ∗ 𝐵, 

𝑌 + 0.212671 ∗ 𝑅 + 0.715160 ∗ 𝐺 + 0.950227 ∗ 𝐵, 

𝑍 = 0.019334 ∗ 𝑅 + 0.119193 ∗ 𝐺 + 0.950227 ∗ 𝐵. 

 Finally the L∗, a∗, b∗ values are given by 

𝐿∗ =  116 ∗ 𝑔 �
𝑌
𝑌𝑟
� −  16, 

𝑎∗ = 500 ∗ [𝑔(𝑋 𝑋𝑟⁄ ) − 𝑔(𝑌 𝑌𝑟⁄ )] , 
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𝑏∗ = 200 ∗ [𝑔(𝑌 𝑌𝑟⁄ ) − 𝑔(𝑍 𝑍𝑟⁄ )] , 

where Xr = 0.950456, Yr = 1, Zr = 1.088754 are the CIE XY Z tristimulus values of the D65 

reference white point; and the function g is given by: 

𝑔(𝑡) =  �
      𝑡1/3,                              𝑡 > 0.008856,

7.787 ∗ 𝑡 +
16

116
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

4.8.2 Contrast 

Local contrast can also be an important factor which influences an image's visual appearance. To 

measure this, we first convert the image into the luminance domain. Then, the root mean square 

(RMS) contrast of each block is given by ratio of standard deviation to the mean of pixel values 

of the respective block. The result is a map in which each value represents local contrast.  

 Specifically, let 𝑙(𝑥) denote the luminance of an image block 𝑥. The contrast feature, denoted 

by 𝑓3(𝑥), is given by: 

𝑓3(𝑥) =  �
𝜎𝑙(𝑥)/𝜇𝑙(𝑥),    𝜇𝑙(𝑥) > 0
0,                     𝜇𝑙(𝑥) = 0

 

where 𝜎𝑙(𝑥) and 𝜇𝑙(𝑥) denote the standard deviation and mean of 𝑙(𝑥), respectively. 

4.8.3 Edge Strength 

To quantify similarity between object boundaries, we use maps of local edge strength. First, 

edges are detected by using Robert’s edge detector. Then the edge strength of each block is 

computed by averaging the number of detected edge pixels within that block. The result is a map 

in which each value represents local edge strength. 

 Specifically, let 𝑓5(𝑥) denote the edge strength of block 𝑥. Let 𝐸 denote the binary edge map 

computed by running the Roberts edge detector on the entire frame. The feature 𝑓5(𝑥) is then 

given by: 

𝑓5(𝑥) =  𝜇𝐸(𝑋) =  
1
𝑚2�𝑒𝑗

𝑗

 

where 𝐸(𝑥) is the corresponding block of 𝑥 in 𝐸, and 𝑒𝑗 is a pixel of 𝐸(𝑥). 
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4.8.4 Sharpness 

The sharper an image the better is its quality. If the image is blurred, we are not able to clearly 

distinguish between neighboring objects. Blurring also reduces the ability to visually recognize 

objects. Thus, sharpness can prove to be a useful feature for estimating image similarity.  

 For measuring local sharpness, we employ our own S3 sharpness map algorithm [14] in 

which local sharpness is measured in both the frequency domain and the spatial domain. In the 

frequency domain, the image is divided into 32x32 pixel blocks with 75% overlap. We then 

measure the slope of the power spectrum averaged across all orientations. In the spatial domain, 

we divide the image into 8x8 pixel blocks and measure local total variation. The two sharpness 

measurements are then combined via a geometric mean. The result is a map in which each value 

represents local sharpness. 

4.8.5 Computation of F-MAD 

For determining image similarity between two images 𝑋1 and 𝑋2, we first compute the five 

feature maps for both the reference image and the distorted image. Next, we compute the peak 

signal to noise ratio (PSNR) between the feature maps of the two images. We also compute the 

linear correlation coefficient between the corresponding maps from the two images. Finally, we 

multiply correlation coefficients with corresponding PSNRs and then sum them up, as follows: 

𝑠𝑢𝑚𝑃𝑆𝑁𝑅 =  �𝑃𝑆𝑁𝑅�𝑓𝑖(𝑋1),𝑓𝑖(𝑋2)�
5

𝑖=1

 

where 𝑓𝑖(𝑋1) and 𝑓𝑖(𝑋2) denote the 𝑖P

th feature map for images 𝑋1 and 𝑋2, respectively. 

 To compute the final image dissimilarity index, we combine 𝑠𝑢𝑚𝑃𝑆𝑁𝑅 with the output from 

the original MAD algorithm via a weighted geometric mean: 

𝐹_𝑀𝐴𝐷 = (𝑑𝑑𝑒𝑡𝑒𝑐𝑡)𝛼(𝑑𝑎𝑝𝑝𝑒𝑎𝑟)𝛽𝑠𝑢𝑚𝑃𝑆𝑁𝑅−𝛾 

where 𝑑𝑑𝑒𝑡𝑒𝑐𝑡 and 𝑑𝑎𝑝𝑝𝑒𝑎𝑟 denote the outputs of MAD’s detection-based and appearance-based 

stages, respectively. The parameters 𝛽 and 𝛾 are given by 𝛽 =  1− 𝛼
2

 and 𝛾 = 1 −  𝛼 −  𝛽, where 

𝛼 is the blending parameter computed in the original MAD algorithm (see [12]). 
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Figure 4.19 Scatterplot of ground-truth ratings of visual dissimilarity vs. F-MAD’s predictions on image’s 
from the CSIQ image database 

 Figure 4.19 shows a scatterplot of ground-truth ratings of visual dissimilarity vs. F-MAD’s 

predictions on images from the CSIQ image database [12]. On this database, F-MAD is able to 

yield estimates of visual dissimilarity which correlate highly with the ground-truth data. 

4.8.6 Results of F-MAD on Vehicle Tracking 

Figure 4.20 shows the five feature maps obtained for a representative video frame obtained from 

our indoor testbed. Figure 4.21 shows a frame corresponding to the occurrence of an accident. 

Here, because of the motion blur and presence of shadows, MAD was unable to correctly track 

both vehicles and was thus unable to detect the collision. F-MAD, on the other hand, was 

successful at tracking both cars, and thus the use of F-MAD allowed the system to correctly 

detect the accident. On average, F-MAD is able increase tracking accuracy by 10-15%. 

Yet, despite the improved tracking accuracy afforded by F-MAD, the algorithm is too 

computationally complex for a real-time implementation. We have devoted a considerable 

amount of research, in collaboration with a computer engineer, toward improving the 

computational efficiency of both MAD and F-MAD. Although we were able to accelerate MAD, 

the computation of the feature maps in F-MAD—particularly, the sharpness map—remains a  
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Original frame Lightness Distance map 

  
Color Distance map Contrast map 

  
Edge Strength map Sharpness map 

Figure 4.20 Feature maps used in the F-MAD algorithm for determining vehicle matches 
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bottleneck in F-MAD. Currently, F-MAD requires 2-3 seconds per frame. Developing a real-

time version of F-MAD remains a goal of our future research. 

  
MAD tracking result F-MAD tracking result 

Figure 4.21 MAD vs. F-MAD tracking results. F-MAD is better able to handle shadows and motion blur 

4.9 Improving Tracking via Kalman Filtering 
The segmentation and tracking algorithm described in 

the previous sections uses only spatial information; no 

motion information deduced from multiple frames is 

used. To investigate the effectiveness of using such 

motion analysis, we implemented and evaluated a 

Kalman-filter-based algorithm, and outline of which is 

shown in Figure 4.22. The goal is to segment the 

foreground (vehicles) from the background while 

simultaneously tracking the foreground objects. We 

model the background statistically from the first few 

frames instead of mere background subtraction. The 

algorithm first loads the data and some parameters for 

background modeling (Nedler-Mead Optimization 

parameters for background adaptation) and tracking 

(Kalman Parameters). Based on the set parameters, the 

algorithm starts modeling the background. Next, the 

 

Load Image 

Get Parameters 

Background Adaptation 

BG Parameter Update 

Segment – FG & BG 

Predict 

Measurement Update 

Figure 4.22 Stages of the Kalman-filter-
based tracking algorithm 
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image is segmented into foreground and background. The foreground objects are then given to 

the Kalman filter for prediction and tracking. Finally, measurement of the actual positions of 

objects in the frame is performed, and tracking (Kalman) parameters are updated accordingly.  

 Demonstrative results of the Kalman Filtering algorithm are shown in Figure 4.23. We 

observed that separation of frame sequences into background and foreground starts by the second 

frame, and object detection and tracking occurs within three frames. (The number in the top-right 

corner of each frame in Figure 4.23 represents the frame number.)  The implemented Kalman 

algorithm can be used for wide number of settings. It is largely independent of the specific 

environment because the background is modeled and continuously updated; thus, lighting and 

weather conditions have little impact on the algorithm. However, as with the F-MAD algorithm, 

the background modeling and prediction stages of the Kalman-filter-based algorithm are too 

computationally expensive to be practical, particularly when numerous vehicles must be tracked. 

Our attempts to accelerate this process via simplifications of the algorithm reduced tracking 

accuracy to the point that the benefits afforded by the algorithm were negligible. Developing a 

version of the Kalman-filter-based tracking which can operate in real-time, yet still yield 

acceptable tracking performance, remains a goal of our future research. 
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Figure 4.23 Results of Kalman Filtering algorithm. (a) Input Frame. (b) Segmented into background and 
foreground (marked red). (c) Image used for modeling background and foreground. (d) Tracking result. 
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CHAPTER 5 

AUDIO BASED ACCIDENT ANALYSIS 
Video data alone cannot guarantee high accuracy in an accident detection system in some cases, 

because it could be easily affected by occlusions, changes in illumination, and limitations of 

segmentation and identification algorithms [15]. As one of the most common sensing modalities, 

audio information is widely used in traffic monitoring systems [16]. Audio sensors, such as a 

simple microphone, are cost effective, and can act as a computationally efficient alternative 

detection device. Signals collected by the microphones contain important audio information 

when traffic accidents occur. In real world environments, crash sounds are usually mixed with 

other distinct sound sources in the monitored environment. For example, horn blaring or multiple 

collisions at different locations may occur at the same time. 

In order to collect high-quality audio information and improve the performance of the 

collision detection system, an array of microphones can be used to replace a single microphone, 

due to the following advantages. Firstly, it may be electronically aimed to collect a high quality 

signal from a desired source. In this regard, a microphone array has the potential to outperform a 

single and highly-directional microphone. Secondly, a microphone array does not need local 

placement of transducers, which will not require any physical movement to alter its direction of 

reception. Besides, it has capabilities that a single microphone does not have, such as the 

automatic detection, localization, and tracking of sound sources in its receptive area. In traffic 

scene analysis, the coordinates of accidents may help emergency services locate potentially 

injured persons. Since traffic accidents are usually accompanied with a high-pitched sound 

resulting from sudden deceleration and/or a loud impact sound due to collision, these features 

can be extracted and used for traffic accident detection. 

In this chapter, an audio processing system is presented to monitor traffic and identify 

potential collisions by collaborating with the video processing system described in the previous 

chapter. The system consists of a module for separation and localization of received audio 

signals at microphone arrays, and a module for crash sound detection of the separated signals. 

The whole system is summarized in Figure 5.1. 
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Figure 5.1 The diagram of the robust audio-based collision detection system 

5.1 Blind Source Separation and Localization 

s1 

s2 
sm 

s
M
 

d1 d2 dn d
N
 -90o +90o 

Figure 5.2 Spatial configuration of sources and microphones 

A linear array with N microphones is assumed and each microphone is with a known location 

dn  with respect to the center of the array. There are M audio sources, each with direction of 

arrivalθm ,  1,m M= , . Here, we deal with the overdetermined case, i.e., M N< . Figure 5.2 

shows the spatial configuration of sources and microphones. Based on the central limit theorem 

(CLT), it’s assumed that noise n(t) is zero mean additive white Gaussian noise across the 

microphones. The received signal for microphone n  in an anechoic environment can be written 
M

as xn ( )t =∑anmsm (t −τ nm ) + n tn ( ) , where anm is the attenuation factor,τ nm is the relative arrival 
m=1

lag between source m and microphone n , τ θnm = dn sin m / c , and c  is the propagation velocity of 
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the sound in the medium. The direction orthogonal to the array is 0 degree, and 

θ ∈ −[ π π/ 2, / 2] . It is also assumed that anm is uniform for all source and microphone pairs, 

M

which is generally valid in a far filed. Therefore, xn ( )t =∑ sm (t −τ nm ) + n tn ( ) . 
m=1

Using a K -point short time discrete Fourier transform, we have 
M

X ( ,p f ) =∑S ( ,p f )e− j f2π τnm
n m + Nn ( ,p f )  

m=1

where p is time frame index and f represents the frequency value. 

1 K−1 f

S
− j k2π

m ( ,p f ) = ∑ s ( ,p k e) K , 
K m

k=0

1 K 1 f

Nn n( ,p f ) = ∑
−

n ( ,p k e
− j k2π

) K , 
K k=0

f = F ks ( −1) / K , and k is the time index in a frame, and Fs  is the sampling frequency. Due 

to the linearity of DFT, the noise is additive in the frequency domain. At one particular 

frequency, the noises at different microphones are uncorrelated. Moreover, signals and noises at 

this frequency are uncorrelated. The model can be written in a compact form: 

X( ,p f ) = A S( f ) ( ,p f ) +N( ,p f ) , 

where S( ,p f ) = [S T
1 2( ,p f ), S ( ,p f ),, SM ( ,p f )] ,

X( ,p f ) = [X1 2( ,p f ), X ( ,p f ),, X ( , )]T
N p f , and A( f )  is a N M× matrix with each column

a(θ ) = [e e− −j2π θfd1 sin m /c , ,j2π fd2 sinθm /c  − n /
m ,e j2π fdN msi θ c ] . 

The frequency-domain blind source separation separates the X( ,p f )  for all the frequencies bins 

to recover s( )t . That is,  

S ( ,p f ) = W X( f ) ( ,p f ) , 

where S (n, )f = [S S 
1 2( p f, ), ( p f, ), ,S ( p f, )]T

M  is the recovered signal vector, and W( f )  is 

the M N× demixing matrix. The main object here is to perform blind source separation and 

localization. That is, to get { }θm , and the demixing matrix estimates W ( f )  for f F= 0, , / 2  s . 

Finally, the inverse STFT is used to recover the source signals s( )t . 
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5.1.1 Preprocessing 

Before using subspace methods, the observed mixtures are normalized into zero mean and unit 

variance, which ensures that the signals at each frequency are also zero mean. It should be 

emphasized that although audio signals are generally non-stationary, a short duration of the 

signals are assumed to be approximately stationary. This is why subspace methods can be 

applied, which is corroborated by the results of computer simulation and real world experiments. 

5.1.2 Subspace Methods 

The covariance matrix of X( f ) is RXX ( f E) = {X X( f ) H ( f )}. In reality, it is approximated by 

1RXX ∑
P P

( f ) = 1 ( , ) H
P X Xp f ( ,p f )  and E{X X( f )}= ∑ ( p f, ) , where P  is the frame number. 

p=1 P p=1

We can write 

RXX ( f ) = A( f E) [S S( )f H H( f )]A ( f ) +RNN ( f ) , 

1 P

where RSS ( f ) = E[S S( )f H H( )f ] = ∑S( p f, )S ( p f, ) . 
P p=1

The generalized eigenvalue decomposition is used to perform subspace computation as 

follows: 

R VXX ( f ) ( f ) = RNN ( f )V( f )Λ( f ),  

where V( f ) = [v v1 2( f f), ( ),, vN ( f )] , Λ( f ) = diag{λ λ1 2( f ), ( f ),,λN ( f )}, λ λi j( f ) ≥ ( f ),  

for i j> , and vi ( f ) is the eigenvector corresponding to eigenvalue λi ( f ) . It is well-known that 

the largest M  eigenvectors form the basis for the column space R f{A( )} of A( f )  and the 

remaining N M−  eigenvectors form the basis of the orthogonal complement R f{A( )}⊥  of 

R f{A( )}. The subspaces R f{A( )} and R f{A( )}⊥  are the signal subspace and noise subspace, 

respectively.  

The ambient noise N( f )  is almost omnidirectional and the correlation is small [17] . It is 

reasonable to assume that noise covariance matrix is R I( f ) =σ 2
NN f M , where σ 2

f  is an unknown 

constant for frequency f . Without loss of generality, we assume σ 2
f =1for all frequencies. 
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Thus, the generalized eigenvalue decomposition becomes the standard eigenvalue decomposition

R Vxx ( f ) ( f ) = V( f )Λ( f ) . 

For arbitrary arrays, the MUSIC algorithm can be employed to estimate the DOAs. It 

computes the following pseudo-spectrum as a function of θ : 

a aH ( )θ θ( )
Pf ( )θ = f f

a EH H , 
f ( )θ θN ( f f)EN f( )a ( )

where E v( f ) = [ ( f f), , v ( )] anda (θ ) = [e e− j2π θfd1 sin /c , ,− j2π fd2 sinθ /c − j2π fdN sinθ /c T
N M +1  N f ,e ] . The 

M largest peaks in the spectrum correspond to the M source directions. One drawback of the 

MUSIC algorithm is that it needs to compute the spectrum values for all directions, which results 

in huge computational burden. Also, the peak search algorithm further adds the computational 

cost. 

Conversely, the ESPRIT algorithm directly gives DOA estimates after obtaining the signal 

subspace, while it applies only to a uniform linear array. It is conducted as follows [18]: 

(1) Choose the eigenvectors corresponding to the M largest eigenvalues and form the matrix 

S1( f ) = [v v1 2( f f), ( ),, vM ( f )] , A1( f f) = [IN−1  ]0 S1( ) , A2 ( f f) = [0 I ]N−1 1S ( )  We get .

the matrix μ( f ) = (A AH
1 ( f f) ( −

1 )) 1A AH
1 ( f ) 2 ( f )  , where IN−1  is the N −1 dimension 

identity matrix, and 0 is a N −1 dimension vector with all zero elements. 

(2) It’s known that the eigenvalues {λu ( f )}of μ( f )  correspond to

{e ej2π fd sinθ1 2/c ,  j2π fd sinθ /c ,  ,  e j2π fd sinθM /c}. Therefore, the estimated DOAs can be 

computed according to arcsin{Im{ln(λ πu ( f ))c / (2 fd )}}, where arcsin(⋅)  is the inverse 

sine function, Im(⋅)  gives the imaginary part of a complex number, and ln(⋅)  is the 

natural logarithm operator.  

After having multiple DOA estimates θm ( f ) at various frequencies f , we will apply some rules 

to obtain final DOA estimates{ }θm .  

5.1.3 Final DOA Determination 

At each frequency, we have the DOA estimates of the sources. However, because of the 

differences in signal power, noise power and thus SNRs, the estimated DOAs can vary a lot. 



 
 

 
 

Therefore, how to choose the frequencies with high SNRs and combine the estimates together is 

a crucial issue. Since high SNRs ensure better DOA estimates, we try to use the DOA estimates 

from frequency components with high SNRs. In reality, only mixtures are given, and thus true 

SNRs are unknown. 

In simulations, noises are assumed to be additive white Gaussian. Therefore, noise power is 

almost equally distributed among different frequencies, while signal power is different at 

different frequencies. Thus, the mixtures’ SNRs at different frequencies are generally 

proportional to the signal power at corresponding frequencies and thus to the mixture power. The 

mixture power at different frequencies here is represented by the sums of squared amplitudes 

(SSA) of the mixture spectrograms at corresponding frequencies. We choose the DOA estimates 

at the frequencies with high SSA values. However, the SSA’s values are attributed to multiple 

source signals’ contribution in signal power. Therefore, the separate SNRs may be quite different 

and so are their DOA estimates. We use the average of the DOA estimates or the weighted 

average normalized by the SSA values to mitigate this effect. In the experiments, noises are 

mostly at low frequencies and we choose relatively high frequencies in which noises are 

generally much less. The same method for simulations is then applied. 

To summarize, we adopt the following rule: Firstly, use principle component analysis (PCA) 

to get M principle components at each frequency f . That is, we have X X( ,p f ) = S H
1 ( f ) ( ,p f ) , 

for p P=1,, . Then, choose Q frequencies { f qq},  1,= ,Q  with the largest P percent sum of  
P

squared amplitudes (SSA). Namely, SSA at frequency f : SSA( f ) =∑ X( ,p f )
2

. Then, the 
p=1

Q

final estimates are obtained by averaging the DOA estimates at these frequencies θ θ 
m =∑ m q( )f  

q=1

or using the weighted average of the DOA estimates. 

After getting the DOAs{ }θm , we can get A ( f ) = [a a(θ θ 
1 2) ( )  (a θ M )] . Demixing matrix 

W ( f )  for each frequency can be obtained by using the least square estimates with the constraint

W A ( f )  ( f ) = I . That is, W ( f )  is the pseudo-inverse of A ( f ) . Then, we get

S ( ,p f ) = W X ( f ) ( ,p f )  for all frequencies. Using the inverse DFT, we can recover the time 

domain source signals{s(t)} . 
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5.1.4 Related Issues 

Source Number Estimation 

In the previous section, the number of sources is assumed to be known beforehand and 

smaller than the number of microphones. In fact, the source number can be determined by 

analyzing the eigenvalues { ( )}i fΛ of the spatial correlation matrix of the mixtures at frequency 

f . That is, the number of dominant eigenvalues is equal to the number of sources. Therefore, a 

subjective threshold on the eigenvalues can be set to estimate the source number. Another 

approach is to use the information theoretical criteria. Akaike information criteria (AIC) [19] and 

minimum description length (MDL) [20, 21] are two common criteria for source number 

estimation. Theoretically, AIC is more likely to give an overestimation, while MDL gives 

unbiased estimation [22] . 

Frequency Bin Selection 

It is known in array signal processing that, for a broadband signal, its high frequency 

components prefer small array spacing, while its low frequency parts prefer large spacing. In 

reality, a given microphone array is fixed and signals of interest can be different. In [23], the 

authors have talked about using microphones with different spacing to handle different frequency 

ranges respectively. That is, considering that we need multiple microphones’ observations to 

perform localization, we may select only a subset of microphones to perform the localization for 

lower frequency signals, as long as the source number is less than the number of chosen 

microphones. Therefore, a microphone array can handle a wider range of signals. 

Microphone arrays sample signals in the space domain. Similar to the aliasing problem in 

time domain sampling, microphone array also experience spatial aliasing problem. The well-

known Nyquist sampling theory tells that if we recover a signal with the highest frequency fmax , 

we use sampling rate 2 fmax  at least. In the spatial sampling, it requires that half of the minimum 

wavelength of a wideband signal should be larger than the interval of the array it impinges. To be 

more specific, for spacing d, the minimum wavelength it can capture is d / 2  and therefore the 

maximum frequency is 2 /c d , where c  is the velocity of sound in the medium. In our problem, 
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the phase delay between two microphones should be smaller than π in modulus, i.e., 

2π fd sinθ π≤ . We only focus on the frequency range where no spatial aliasing occurs. On the 

other hand, if the frequency of a signal is too low and thus its wavelength is too long, the arra

ff

y 

can hardly capture the small amount of phase change of the sound signal. Therefore, a low cuto  

frequency is also set. Although audio signals are naturally broadband, we can only consider some 

specific frequency range, at which the algorithm can estimate the DOAs more accurately. 

Performance Measure 

The performance measures for algorithm evaluation are the mean squared error (MSE) of 

DOA estimates and the signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR), and 

signal-to-artifacts ratio (SAR) for separation, which are firstly introduced in [24]. The MSE for 

source m  at frequency f  is computed as  

1MSEm f ( 2
, = ∑ θ θm ( f ) − m ) , 

I I

where I  is the number of Monte Carlo runs. For separation, it’s assumed that the recovered 

source signal can be decomposed as 

s sˆm = target + einterf + +enoise eartif , 

where starget  is a modified version of sm with allowed distortion, einterf , enoise , and eartif are 

respectively the interferences, noise, and artifacts terms. The existing algorithms for recovered 

signal decomposition and SDR, SAR, and SIR computation can be found in [24]. 

5.1.5 Simulations 

In the simulations, there are N = 4 microphones uniformly and linearly distributed with spacing 

d = 0.05 . Two sources M = 2  are located at directions θ1 = 40  and θ2 = 40  degrees, 

respectively. Source signals include music and speech and they are normalized into signals with 

zero mean and unit variances. The velocity of sound in the air is c = 340m/s . The sampling rate 

is 16KHz. The noise is set to be additive white Gaussian noise (AWGN) with variance σ 2  across 

microphones. It is noted that for audio signals, the power at different frequencies are different, 

while for white noise, the power at different frequencies are ideally equal. The signal-to-noise 

ratio is set to be 10log 2
10 (M /σ ) . We only consider the frequency range without spatial aliasing. 
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That is, in our simulation, f ≤ c / (2d ) . We run 10000 Monte Carlo runs for each SNR. 

Additionally, in all simulations, due to the inability of a microphone array to capture low 

frequency signals, we set a lower frequency threshold to be 1500 Hz. The parameter setting in 

simulations is summarized in Table 5.1. 

 

Table 5.1 Parameter settings in simulations 

Mixture Characteristics Parameters to be Specified 

Number of Sources M  2 

Source Categories Speech & Music 

Source Length 4 Seconds 

Source Angles +/- 40 degrees 

Noise Type AWGN (sensor noise) 

Number of Microphones N  4 

Array Spacing d  0.05 

Sampling Rate sF  16KHz 

Mixture Type Pure Delay 

Mixture Domain Frequency Domain 

Frame Length 256 

Frame Shift 256 

FFT Window Rectangular 

Monte Carlo Runs 10000 
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Figure 5.3 The spectrograms of different sources: source1: male speech (top left), source2: female 

speech (top right), source3: piano (bottom left), and source4: trumpet (bottom right) 

Source Spectrograms 

Audio signals’ diversity in time-frequency characteristics can be illustrated by their 

spectrograms, which are the signals’ amplitude values at particular time-frequency points. It’s 

known that there is a tradeoff between time and frequency resolutions in spectrogram 

representation. That is, a high frequency resolution results in a low time resolution, and vice 

versa. Figure 5.3 shows the spectrograms of several source files with sampling rate 16KHz and 

frame length 256 samples, equal to 3.2 milliseconds. Source1 and source2 are respectively male 

and female speeches. Source3 and source4 are corresponding piano and trumpet music. They 

show typical time-frequency characteristics for each category. That is, speeches possess wide 

spectrum and short time duration, while music consists of harmonic frequencies. 
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Source Number Estimation 

Eigenvalue based Method 

Figure 5.4 shows the normalized eigenvalues of the correlation matrix at different 

frequencies for different source combinations at SNR = 30dB with frame length 256 samples. 

The plots are obtained by averaging the results over total 10000 runs. It is clear that for different 

sources, the whole trend of how eigenvalues changes with frequency is different. With SNR = 30 

dB, the first two eigenvalues are much larger than the rest two eigenvalues for most of the 

frequencies. It’s easy to set a subjective threshold to decide the source number. That is, when the 

signal power is dominant in the mixture, using eigenvalue analysis to estimate source number is 

suitable. 

 

Figure 5.4 Normalized eigenvalues versus frequencies for different source combinations with 

SNR = 30 dB for mixture of source1 and source3 (left) and mixture of source2 and source4 

(right) 
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Information Theoretical Criteria 

Now we talked about information theoretical criteria, which include Akaike information 

criterion (AIC) and minimum description length (MDL). Figure 5.5 shows the percentage of 

correct source number estimates in total 10000 runs at SNR = 30dB using AIC and MDL. It is 

clear that the source estimation using MDL is 100 percent accurate and better than the estimation 

using AIC. 

 

Figure 5.5 Correct estimation percentages versus frequencies with SNR = 30dB using AIC and 

MDL for mixture of source1 and source3 (top two) and mixture of source2 and source4 (bottom 

two) 

Localization Performance 

Figure 5.6 shows the MSE with respect to different frequencies using 10000 Monte Carlo 

runs with frame length 256 samples for different SNRs using mixture of source1 and source3. It 

is obvious that with higher SNRs, the MSE performance is much better. For different source 

files, the patterns of MSE versus frequency curves are very different. This is likely to be related 

to the SNR difference of different signals at different frequencies and at different time locations. 

In other words, it is because of the differences in time frequency characteristics for different 

source files. 
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Figure 5.6 MSE versus frequencies for different SNRs with frame length 256 samples using mixture of 
source1 and source3 

Frequency Bin Selection for DOA Estimation 
 

Figures 5.7 and 5.8 show the MSE of DOA estimates versus SNRs using the average and 

weighted average of the DOA estimates at the frequencies with the largest 30% percent SSA. 

The results using two methods have little difference and the MSE monotonically decreases with 

an increasing SNR. 
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Figure 5.7 MSE versus SNRs with frame length 256 samples using average DOA estimates for 

mixture of source1 and source3 (left) and mixture of source2 and source4 (right) 

 

Figure 5.8 MSE versus SNRs with frame length 256 samples using weighted average DOA 

estimates for mixture of source1 and source3 (left) and mixture of source2 and source4 (right) 

5.2 Fusion of Multiple Microphone Arrays 
In this section, we consider separation and localization of multiple sources using multiple 

microphone arrays. The multisource condition further complicates the problem, which 

necessitates the separation step. Instead of performing BSS and DOA estimation at each array 

independently, and then fusing DOAs for localization, the proposed scheme handles all of the 

above processing simultaneously. The estimation problem is formulated as a constrained 

optimization problem, which can be solved in a distributed manner using the alternating direction 

method of multipliers. Each array exchanges only tentative DOA information with others in the 

iterative algorithm. Due to the mutual constraints, multiple arrays can collaboratively solve for 
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the unmixing matrices, DOAs and locations while avoiding the traditional permutation and 

scaling issues. 

 The whole algorithm contains the following steps: 

(1) Initialization: Each array is given initial values of all variables: �𝐖𝑙
(0)(𝑓)�, �𝜃𝑠𝑙

(0)�, and 

�𝑢𝑠
(0), 𝑣𝑠

(0)�, 𝑠 = 1, … , 𝑆, 𝑙 = 1, … , 𝐿,𝑓 = 1, … ,𝐾. 

(2) In-array processing: for iteration i and array l, update estimates �𝐖𝑙
(𝑖)(𝑓)�, �𝜃𝑠𝑙

(𝑖)�, and 

�𝑢𝑠
(𝑖), 𝑣𝑠

(𝑖)� according to (10), (11) and (13), 𝑠 = 1, … , 𝑆,𝑓 = 1, … ,𝐾. 

(3) Inter-array communication: each array broadcast its �𝜃𝑠𝑙
(𝑖)�

𝑠=1

𝑆
 to all the other array. If the 

stopping criteria (i.e., the difference between the estimates of the variables from two 

consecutive iterations are smaller than a predefined number) are satisfied, final estimates 

are achieved. Otherwise, i:=i+1 and go back to step (2). 

 Experiments are conducted in order to evaluate the performance of the proposed algorithm. 

We consider a simple setup with 2 sound sources, 3 microphone arrays, and each array equipped 

with 2 microphone elements. 3 seconds of audio data are obtained at each microphone. The 

sampling rate is 8 KHz. The frame length is 125 ms and the frame shift is 2 ms. The distance 

between the two microphone elements in an array is d = 0.04m, which satisfies the condition of 

being smaller than half of the minimum wavelength (0.085/2 m) in order to avoid the spatial 

aliasing effect. The coordinates of the three arrays are (3,4), (5,5), and (7,4), and the orientations 

are 10◦, 20◦, and 30◦, respectively. The two sources are located at (4,7) and (6,6), respectively. A 

conventional method is implemented for comparison, which consists of two steps. First, for each 

array, the ICA method with the directivity pattern is used to estimate unmixing matrices and 

DOAs. Then, based on all DOAs, the source locations are estimated using the triangulation 

technique. 

 It is generally difficult to find a direct measure to evaluate the estimates of unmixing 

matrices. Since they are closely related to DOAs, to evaluate the performance of the signal 

separation, we examine the DOA estimation performance. Figure 5.9 shows the DOA estimation 

error for both the proposed algorithm and the conventional two-step algorithm. We can clearly 

see that due to the information exchange between the arrays, after a few iterations our proposed 
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algorithm converges to DOA estimates that are much closer to the ground truth than the 

conventional two-step method. To evaluate the performance of the source localization, we 

calculate the source location estimation error as shown in Figure 5.10. The proposed algorithm 

gives much more accurate source location estimates than the conventional triangulation method. 

 

 

Figure 5.9 DOA estimation error vs. the number of iterations 

Figure 5.10 Source location estimation error vs. the number of iterations 

5.3 Collision Sound Detection 
The collision detection problem could be modeled as a binary hypothesis testing problem based 

on the received audio signals. Let H  0 stand for the case where there is no collision and H1 stand 

for a collision occurred in the surrounding environment. Certain measurements are needed to 

distinguish the collision sound from some other environmental sound sources. These 

measurements can be referred as the features extracted from audio signals. There are many 

features like power, frequency, etc., that can be used to distinguish between the collision case 
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and the non-collision case. The most intuitive feature is the audio signal power P  a at any 

microphone, since the power is generally larger in the presence of a collision compared to the 

case where there is only normal traffic. However, this may not be a good feature sometimes, 

because it is possible that other sound sources have high power. Thus, more distinct features are 

needed. 

5.3.1 Audio Feature Extraction 

Collision sounds have some important characteristics based on which our human ears could 

easily distinguish them from non-crash sounds. It is found that the Mel Frequency Cepstral 

Coefficients (MFCC) obtained through the MEL Frequency Cepstral Transform (MCT) provides 

the most distinguishable features needed for collision sound identification. The frequency bands 

in MCT are equally spaced on the non-linear Mel frequency scale which approximates the 

behavior of human ear auditory system. The whole process of how to calculate MFCCs is shown 

in Figure 5.11.  

 

Figure 5.11 Block diagram of calculating MFCCs 
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The first step is to digitize received audio signals at the microphone array. Every time frame 

of the signal using the short time Fourier transform and a hamming window of 100 milliseconds 

and 50 milliseconds overlapping is processed in the experiment. This hamming window can be 

expressed as, 

w n( ) = 0.54− −0.46cos(2πn / (N 1))  

All signals are sampled at 8 KHz at the microphone array and MFCCs are obtained by 
N−1

calculating the FFT of the sampled signals: x t( ) is X i2 /nk N
k =∑ x e− π

n  
n=0 .

The filter bank with P  trian
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5.3.2 MFCC Based Neural Network Classification 
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The extracted MFCCs are to be used to distinguish the collision sound from other background 

traffic sounds. This process can be achieved by classifying the signals into collision and non-

collision sounds by using a suitable classifier. The class for the background sounds, including 

cars and trucks passing by, cars skidding and braking, sounds from industrial and construction 

sites in the vicinity, etc., is denoted by H  0 and the class for the collision sounds is denoted by 

H1 . Various recognition methods are available for the classification purpose. Due to its 

popularity and efficiency, a back propagation (BP) neural network is adopted to identify the 

collision sounds from the non-collision sounds in this study. 

Since the Mel Frequency Cepstrum contains important information only in the first few 

components, the remaining components can be neglected for audio processing in this case. 

Specifically, the first 13 cepstrum coefficients are used for detection. They are fed into the neural 

network for classification. 

 

Figure 5.12 Block diagram of MFCCs based neural network classification 
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In the output layer of neural network, the output varies between 0 and 1. If the value is less 

than the threshold 0.5, it indicates the selected frame is not a collision sound. Otherwise, it is 

classified as collision. Since the collision sound may last a few consecutive time frames. If only 

one frame is determined as the collision sound among a number of frames, it can be asserted that 

the decision may be wrong. The identification of a collision can be obtained by observing 

whether there are at least a number of consecutive frames that provide the same detection results. 

If yes, then the detection decision can be made. The number of consecutive frames is set to be 5 

in this research. The whole process of how to make a decision is shown in Figure 5.12. Based on 

the output of the classifier, once a collision is detected, estimation of the location of the collision 

is triggered. 

5.3.3 Collision Detection Experiments 

In the first set of experiments, the performance of the collision detection method is evaluated. A 

neural network is trained by using 20 non-collision sounds and 10 collision sounds with some 

specific collision features. The total number of MFCC feature vectors in the training files is 

6310. They are divided into three parts: 4416 MFCC feature vectors (70% of data) are applied 

for learning and training, 947 feature vectors (15% of data) are utilized for validation and the 

remaining 947 MFCC feature vectors (15% of data) are applied for testing. A target class ‘0’ 

corresponds to a background sound and ‘1’ indicates a collision. The performance matrix of this 

BP neural network is shown in Figure 5.13. The overall accuracy of this neural network given is 

around 96%. The false alarm rate listed in all confusion matrices is around 1.0%, and the missed 

detection rate is around 2.5%. 

The BP neural network is tested with 40 various audio samples in which 20 are pure traffic 

background sounds and the other 20 have collision sound in them. A collision decision is made 

detected if the target class is ‘1’ for five consecutive time frames. It is noted that 19 out of 20 

collision samples are correctly detected and all 20 background samples are accurately classified. 

This gives us a 5% missed detection rate and a 0% probability of false alarm, as a whole system 

renders an error rate of 2.5%. The test result is shown in Table 5.2. 

Table 5.2 Test results analysis 

Samples Background Collision Missed detection False alarm 
40 20 20 5% 0% 
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Figure 5.13 Neural network confusion matrix 

5.4 Audio/Video Fusion for Decision-Making 
The accuracy of video-based accident detection is usually affected by occlusion, change in 

illumination and limitations of segmentation and identification algorithms. On the other hand, in 

audio-based accident detection, a loud noise may be due to a large cargo truck passing over a 

bump or a near-accident that was eventually avoided after sudden application on the brakes. 

These ambiguities cannot be eliminated by using one sensing modality alone. We propose to take 

advantage of multiple, disparate sensing modalities wherein the fallacies of one sensor can be 

compensated by the strengths of a different sensor. By fusing data from audio and video, we 

expect to increase accuracy through collective reasoning. 

Fusion of auditory and visual information will take place within each sensor node. Given that 

a true accident occurs at a location [θ,z] where θ is the direction of the accident in the sensor-

node coordinate system and z is the height of the event in the image, the probability density 

functions (pdf) of audio and video measurements can be represented by 𝑝𝑎(𝑟𝑚(𝑡)|[𝜃, 𝑧]), 

m=1,…,M and 𝑝𝑣(𝑿(𝑡)|[𝜃, 𝑧]), respectively. However, the pdfs are generally difficult to obtain 
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because they also depend on the environment, background noise and algorithms used for 

detection in each modality.  

The posterior probability of an accident at [θ,z] based on all observed audio and video data 

can be represented as 𝑝([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡),𝑿(𝑡)). The larger the probability value, the more 

probable the accident at [θ,z] in the scene. If we have no prior knowledge of accident location 

distributions, the prior probability p([θ,z]) can be assumed to be uniform. Using Bayes’ rule, it 

can be shown that  

𝑝([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡),𝑿(𝑡) ) ∝ 𝑝_𝑎 ([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡)) 𝑝_𝑣 ([𝜃, 𝑧]|𝑿(𝑡)) 

 

 

Figure 5.14 Saliency detection. (a) Original image. (b) Detected regions of interest based on image data.  
(c) Detected regions of interest from audio and video fusion 

Figure 5.15 (a) Video domain pdf (b) Audio domain pdf (c) pdf after video/audio fusion 
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due to the conditional independence between audio and video data because they are from 

different sensing mechanisms. This indicates that the final probability distribution of accidents is 

proportional to the product of its distribution based on audio and video data respectively. The pdf 

𝑝𝑎([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡)) can be obtained from the audio saliency map 𝑅(𝜃) through proper 

normalization, i.e., 𝑝𝑎([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡)) =   𝑅(𝜃) (𝐷 × ∫𝑅(𝜃)𝑑𝜃⁄ ), where D is the height 

of the image. The pdf 𝑝𝑣([𝜃, 𝑧]|𝑿(𝑡)) can be obtained in a similar way by normalizing the video 

saliency map. Our results are shown in Figures 5.14 and 5.15, which depict how fusing auditory 

and visual information can lead to refined saliency maps. 

5.5 Outdoor Experiments 
We perform the experiments in an open area between two buildings. A rectangular wooden 

frame is used to support four microphones forming an array. The inter-element spacing of the 

array is 0.05m. 

We use an NI CDAQ 9171 USB chassis, shown in Figure 5.16, to simultaneously connect 

four microphones with a laptop. The microphones are omnidirectional and the highest supported 

sampling rate is 51.2 KHz. Two USB-powered loud speakers are placed at one side of the 

microphone array as the audio sources. After collecting certain length (e.g., 4 seconds) of 

signals, our algorithm is used to estimate the DOAs of the sources. Figure 5.17 illustrates one 

example of the experiment setup. 

 

Figure 5.16 a NI cDAQ 9171 USB chassis and four microphones 
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Figure 5.17 One example of the experimental setup 
 

The main noise source in outdoor environments is wind, which significantly affects the 

performance of our algorithm. The parameter setting for experiments is summarized in Table 5.3. 

Table 5.3 Parameter setting for outdoor experiments 

Experimental Parameters Values 

Number of Sources M  2 

Source Categories Speech & Music 

Source Length 4 Seconds 

Number of Microphones N  4 

Array Spacing d  0.05 

Sampling Rate F  s 51.2 KHz 

Frame Length 1024 

Frame Shift 1024 

FFT Window Rectangular 
 

As in the simulations, we set lower cutoff frequency and upper frequency, in which we 

perform subspace method. Moreover, environmental noise occupies mainly low frequencies, as 

shown in Figure 5.18. It is the spectrogram of the background noise during an experiment. It is 

clear that most power is distributed below 1 KHz. 
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Figure 5.18 The spectrogram of the background noise 

In outdoor environments, when signals consist mostly of low frequency components, the 

algorithm fails to provide good estimates because of the low SNR and also the existence of the 

cutoff frequency. When signals contain significant amount of high frequency components, the 

estimates at these frequencies are good. Figure 5.19 shows the relations between DOA 

estimation accuracy and original source spectrogram. Except for the low frequency part, the 

estimated DOAs are more accurate at frequencies with high power and less accurate at low 

frequency. This is clear in Figure 5.19 (left). The performance difference is because of the SNR 

difference at different frequencies. 

 

Figure 5.19 Estimated DOAs and original spectrograms for source1 (left) and source2 (right) 
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CHAPTER 6 

DEVELOPMENT OF A SMALL-SCALE TESTBED 
As an important part of this testbed, it is desirable to develop autonomous driving RC cars that 

can follow predefined trajectories so that different traffic scenarios can be realized. However, 

controlling non-holonomic RC cars with low-accuracy steering angles and non-smooth velocity 

is a challenging problem. We propose an efficient feedback control algorithm based on virtual 

vehicles to allow the RC cars to track predefined trajectories. In Section I we present the 

hardware setup of the testbed. Section II shows the control hardware design of the automated RC 

car. Section III describes the RC car kinematic model, the tracking control algorithm, and the 

control of multiple RC cars, respectively. Section IV shows the experimental results.  

6.1 Hardware Setup of the Testbed 

6.1.1 Overview 

The scale-down testbed we developed has four main parts: 

• An arena, 

• An indoor localization system, 

• Automated radio controlled (RC) cars, 

• Roadside monitoring facilities. 

To mimic typical traffic environments we build an arena with a wooden floor, mock 

buildings and streets. An indoor localization system built from an optical motion capture system 

is developed. Automated radio controlled cars with both autonomous driving and human driving 

capability are developed. For the roadside monitoring facilities, an overhead fish-eye camera is 

used and the associated advanced video processing algorithms are developed which include 

image segmentation, object identification and tracking. The overall testbed is shown in Figure 

6.1. 
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Figure 6.1 The developed testbed for experimental validation 

6.1.2 Arena 

We built an arena with a dimension of 16 feet by 12 feet, which can be used to create various 

mock environments. The arena is based on a wooden floor on which streets, roads and 

intersections can be set up. A carpet on top of the wooden floor is used to mimic concrete or 

asphalt road surfaces. We can also place mock buildings, trees, and other decorations to make the 

scene more realistic. 

6.1.3 Indoor localization system 

An indoor localization system is built up to localize RC cars in the simulated traffic environment. 

The purpose of this system is to provide location feedback of the cars in order to control them to 

move along predefined tracks. This indoor localization system can mimic the function of the 

GPS system in the real world. This system is developed from an optical motion capture system 

(Opti-Track) from NaturalPoint, Inc (http://www.naturalpoint.com/optitrack). There are 12 

cameras mounted on tripods to cover the whole arena. The Opti-Track system has the capability 
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of capturing 100 frames per second, so that the location and orientation information can be 

obtained in real time and with high accuracy (above 95 percent). The Opti-Track system tracks 

each RC car via the markers (see Figure 6.2) mounted on top of the RC car. To simulate real 

world GPS signals, we can down sample the data and even inject noise into the RC car location 

and orientation estimates. 

6.1.4 Automated RC cars 

We have developed both autonomous driving and human driving RC cars. They are based on the 

design of an automated RC car which will be explained in Section 6.2. 

 

 

Figure 6.2 Two automated RC cars: (Top) Autonomous driving RC car (Bottom) Human driving RC car 

For the autonomous driving RC car (see Figure 6.2-Top), four markers are mounted on top of 

an automated RC car to build a rigid body so that the location and orientation of the car can be 

tracked. A speaker is mounted on the back of the car for the purpose of mimicking collision 

sound, which can be used in automated collision detection research. The tracking control 

algorithm that allows the RC car to track predefined trajectories is developed in the computer, 

and the control commands are sent to the RC car via the Xbee wireless communication. 

For the human driving RC car (Figure 6.2-Bottom), a miniature wireless camera is mounted 

on the hood of the RC car to provide visual inputs. It is used to observe the environment in front 
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of the car and send the video stream through wireless communication to the PC. The human 

driver sits in front of a wheel stand and drives the RC car while he/she observes the video stream 

on the monitor. We developed a program using the software development kit (SDK) of the wheel 

stand to read the data from the steering wheel which include the wheel turning angle, brake, gas 

pedal and gear shift status. Based on that, we send control commands, such as “move forward”, 

“backward”, “turn left”, “turn right”, “speed up”, or “slow down”, through the Xbee wireless 

communication to the automated RC car. Such a human driving setup can partially mimic the 

human driving experience. The whole setup of this human driving system is shown in Figure 6.3. 

The human driving RC car is also equipped with speakers to generate collision or other sounds to 

mimic real traffic. 

 

 

Figure 6.3 The setup for manually driving RC cars 

6.1.5 Roadside monitoring facilities  

A Mobotix Q24 fish-eye camera as shown in Figure 6.1 is mounted over the arena to serve as a 

roadside monitoring facility. This camera is capable of providing different views simultaneously, 

including a full 360 degree all-round view, hence it can cover the whole arena to monitor the 

traffic underneath it. This camera uses an IP-based interface. The stream of live images from the 

camera is obtained through a socket connection. The features of the camera (including 
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resolutions, frame rates, etc) can be easily modified by sending a web request. The zooming and 

panning of the camera lenses can be controlled by virtual PTZ (Pan, Tilt, Zoom) functions. The 

camera provides a highest resolution of 3M pixels and the color images are scalable from 160×

120 to 2048×1536. The highest frame rate is 30fps. This camera can be used in research 

projects involving traffic monitoring, such as automated collision detection or anomaly detection 

through visual surveillance.  

6.2 Hardware Design of Automated RC Car 
We used commercial off-the shelf RC cars with a scale of 1:14. The RC car comes with two DC 

motors: a front DC motor for steering control and a rear DC motor for speed control. After 

testing the front DC motor we find that it has very poor steering performance and cannot be used 

in our project. Therefore the front DC motor is replaced by a servo motor which is mounted in 

the RC car as shown in Figure 6.4. The overall hardware design of the automated RC car control 

is shown in Figure 6.5. There are two major parts in the hardware design: an XBee wireless 

module and a control board embedded in the RC car body. 

 

 

 

Figure 6.4 The servo motor is mounted in the RC car 
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Figure 6.5 The hardware setup for the RC car control 

 

XBee wireless module: This module is using small, low power radio based on the IEEE 

802.15.4 standard and originally targeted for wireless personal area networks (WPANs). Due to 

the limited size of our testbed, we find it is a good solution to wireless communication in our 

testbed. This XBee wireless module has a data rate up to 250Kbps and can serve as the 

communication channel between RC cars and between RC cars and roadside infrastructures. For 

the purpose of automated RC car control, one XBee module is connected to the PC and another 

is mounted on the control board as shown in Figure 6.5, enabling the wireless communication 

between the PC and automated RC cars. 

Control board: An embedded control board is developed to replace the original circuit board 

inside the RC car. Its design is illustrated in Figure 6.6. The MCU (ATmega 162) in the middle 

of Figure 6.6 functions as the control unit for the automated RC car. A speaker is used for 

playing recorded sounds to mimic real world traffic sounds while a microphone is used to record 

environmental sounds. Both the speaker and the microphone are driven by a voice record IC 

(ISD 1700). The PWM output from the MCU is used to drive the front servo motor and the rear 

DC motor so that the orientation and the velocity of the RC car can be controlled, respectively. 
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Figure 6.6 The function blocks of the control board 

6.3 Autonomous RC Car Control 
To create various traffic scenarios, we need control the autonomous RC cars so that they can 

follow predefined trajectories. In this way, we can develop scripts that describe the desired 

movement of the vehicles in the arena. For example, we can create a scenario of heads-on 

collision between two cars exactly the way we want. 

To control multiple RC cars simultaneously, the control algorithm is implemented using 

multi-thread programming. The PC connects to a USB wireless adapter (XBee) for 

communicating with the RC cars. The architecture of the multi-car control program is shown in 

Figure 6.7. The controller for each RC car is implemented independently in a separate thread. 

These threads can also realize inter-vehicle communication. 

The problem of controlling a non-holonomic vehicle is well studied [25-28], but controlling a 

nonholonomic vehicle with low accuracy and non-smooth velocity is a challenging problem. In 

this section, we first build a model of the RC car, then focus on developing efficient control 

algorithms for the RC car to track a predefined trajectory. 

 



 
 

80 
 
 

 

Figure 6.7 The architecture of the multi-car control program 

6.3.1 RC Car Model 

As we know most existing models of non-holonomic vehicles [25-27] are usually described as: 

�
𝑥̇ = 𝑣𝑐𝑜𝑠(Ψ)
𝑦̇ = 𝑣𝑠𝑖𝑛(Ψ)

Ψ̇ = 𝜔
 

where Ψ is the orientation angle of the vehicle (see Figure 6.8), and ω is the angular velocity. 

The model stated above is simple and does not consider the actual constraints on the range of 

steering angle and the sliding angle which reflects the sliding errors between the center point of 

the car and the center point of the front axial. 

Since the RC car has low accuracy on steering we model it as: 

�
𝑥̇ = 𝑣𝑐𝑜𝑠(Ψ + 𝜃 + 𝛽)
𝑦̇ = 𝑣𝑠𝑖𝑛(Ψ + 𝜃 + 𝛽)
Ψ̇ = 𝜔

 

where θ is the steering angle of the front wheels (see Figure 6.8), and β is the sliding angle that is 

obtained based on the center point of the car and the velocity vector v. The β angle is computed 

as β = Ψc − Ψ, here Ψc is the heading of the vehicle at the center point. 
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Figure 6.8 Illustration of RC car tracking the virtual vehicle moving in a predefined trajectory  

6.3.2 RC car control algorithm 

In order to let the RC car track a predefined trajectory we use a virtual vehicle based approach. 

The virtual vehicle is a reference point that is moving on the path we want the RC car to follow. 

The virtual vehicle, s(t), is designed to move along the path with xd = p(s) and yd = q(s). In order 

to track the virtual vehicle, two constraints are considered in the following two inequalities, 

which are related to the difference between the actual heading and the desired heading of the RC 

car, and the distance between the actual and the virtual vehicle, respectively. 

𝑙𝑖𝑚(|Ψ(𝑡) −Ψ𝑑(𝑡)|)𝑡→∞ ≤ 𝑑Ψ 

here Ψd is the desired angle, dΨ is a small angle threshold. 

𝑙𝑖𝑚�𝜌(𝑡)�
𝑡→∞

≤ 𝑑𝜌 

here dρ is a small distance threshold. ρ(t) is the Euclidean distance between the RC car and the 

virtual vehicle (see Figure 6.8). It is computed as 

𝜌(𝑡) = �Δ𝑥2 + Δ𝑦2 

here Δx = xd − x and Δy = yd − y. 

In order to handle the first equality, the steering angle control for the RC car is based on the 

proportional- derivative control (PD control) as follows: 

𝜃(𝑡) = −𝑘𝑝[Ψ(𝑡) −Ψ𝑑(𝑡)] − 𝑘𝑑�Ψ̇(𝑡) − Ψ̇𝑑(𝑡)� 
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here kp and kd are positive constants. 

As mentioned before, although we replaced the front DC motor by a servo motor to obtain a 

controllable orientation and wider steering angles (20 degree), the left and right steering angles 

are not the same because the mechanical steering part is not rigid. Additionally, the velocity of 

the RC car is not smooth. The low-accuracy steering angle of the RC car is illustrated in Figure 

6.9. In this model, since the front wheels mounted on the car are not stable, the left steering angle 

range (Figure 6.9, Up) is different from the right one (Figure 6.9, Down). Specifically, in our 

experiment we use a RC car which has 𝜃𝐿𝑚𝑎𝑥 between 22 degree and 27 degree and 

𝜃𝑅𝑚𝑎𝑥  between 15 degree and 20 degree. This difference on the left and right steering angle is one 

of the reasons that make the car not able to track the predefined trajectories when applying any 

traditional tracking control algorithm. 

Based on the above analysis, in order to handle the second inequality the parameter γ is 

introduced [29, 30] 

𝜌̇ − 𝑑̇𝜌 = −𝛾�𝜌 − 𝑑𝜌� 

here γ is a positive constant. From the relation between ρ(t) with Δx and Δy, we can obtain: 

𝜌̇ =
1

�Δ𝑥2 + Δ𝑦2
(Δ𝑥Δ𝑥̇ + Δ𝑦Δ𝑦̇)

=
1
𝜌

[Δ𝑥(𝑥̇𝑑 − 𝑥̇) − Δ𝑦(𝑦̇𝑑 − 𝑦̇)]
 

Here 𝑥̇𝑑 = 𝑝̇(𝑠)𝑠̇ and 𝑦̇𝑑 = 𝑞̇(𝑠)𝑠̇. 
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Figure 6.9 Low accuracy steering angle of the RC car. The left steering angle range is different from the 
right one 

Notice that dρ is a constant, 𝑑̇𝜌 = 0, we have 

1
𝜌
𝑠̇�Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠)� =

1
𝜌

(Δ𝑥𝑥̇ + Δ𝑦𝑦̇) − 𝛾�𝜌 − 𝑑𝜌� 

or, 

𝑠̇ =
1

Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠) �
(Δ𝑥𝑥̇ + Δ𝑦𝑦̇) − 𝛾�𝜌 − 𝑑𝜌�� 

From the above equation, it is easy to see that if Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠) = 0 then 𝑠̇ → ∞, or the 

car cannot track the virtual vehicle. In order to have Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠) ≠ 0, the car should stay 

close to and behind the virtual vehicle. From this analysis we should make the virtual vehicle 

move with constant velocity at initial time when the car is far from it. This means that we need to 

have s(t) = s(t − 1) + c (c is a positive constant) if t<tthreshold. The whole tracking control 

algorithm is shown in the Algorithm 1. 
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Algorithm 1: The virtual vehicle tracking algorithm 

Initialization phase: 

- Create a trajectory of the virtual vehicle that the RC car wants to track. 

- Initialize parameters: v, kp, kd, 

m

𝑑 𝑠 . 

Imple entation phase: 

𝜌, 𝛾, 𝑠, ,Δ𝑡

If t<tthreshold then 
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𝑠

6.4 Experimental Results 
In this section we test our proposed control algorithm for a single RC car, then we extend the test 

to three RC cars based on multi-thread programming. 

The parameters for RC control algorithm (Algorithm 1) are as follows: the desired distance 

between the RC car and the virtual vehicle dρ is 300mm; the initial velocity of the virtual vehicle 

is 0; the constants for the PD steering controller kp = 1, kd = 0.8; the constant γ for computing 

the velocity of the virtual vehicle is 2; and other parameters are v = 67 and Δt = 0.00056. The 

parameters of the virtual vehicle moving in a circle are as follows: [x, y] = [Rcos(s), Rsin(s)] 

with its radius R = 1500mm. 

The tracking results of Algorithm 1 are shown in Figure 6.10. Namely, Figure 6.10 (left) 

shows the RC car tracking the virtual vehicle which moves in the circle trajectory. Figure 6.10 
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(middle) shows the evaluation of the distance between the RC car and the virtual vehicle, and we 

can see that this distance converges to the predefined value of dρ = 300mm. Hence, this result 

meets our control goal on page 80. In addition, we evaluate the difference between the actual 

heading of the RC car and the desired one as shown in Figure 6.10 (right). This result also 

satisfies the requirement mentioned previously.  

 

 

Figure 6.10 Trajectories of the RC car tracking the virtual vehicle moving in circle (Left), the distance 
between the RC car and the virtual vehicle (Middle), and the difference between the actual heading of the 

RC car and the desired one (Right) 

We also evaluate Algorithm 1 for 3 RC cars running through an intersection as shown in 

Figure 6.11. In this test we design the trajectories which are more complicated than the circle 

trajectory. These trajectories have sharp changing points at the transition from circle trajectory to 

line trajectory. Figure 6.11 (left) shows the three RC cars tracking the three virtual vehicles 

which move in the mock streets with an intersection. Figure 6.11 (middle) shows the evaluations 

of the distance between the RC cars and the virtual vehicles. Figure 6.11 (right) shows the 

difference between the actual heading of the RC cars and the desired ones, respectively. 

Observing these figures we can see that at these sharp turning points on the trajectories, the 

tracking performance deteriorates. 
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Figure 6.11 Trajectories of the 3 RC cars tracking the virtual vehicles moving in desired 

trajectories (Left), the distance between the RC car and the virtual vehicle (Middle), and the 

difference between the actual heading of the RC cars and the desired ones (Right) 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary 
The overarching goals of OKCARS are (1) to reduce the time required for proper assistance (not 

just first responders) to arrive at the scene, and (2) to mitigate further accidents by forewarning 

oncoming traffic. In this project, we investigated the limitations of current automatic incident 

detection systems and developed an intelligent collision analysis and response system through 

audio and video information collection from a traffic scene. We developed a prototype of 

OKCARS by carefully selecting cost-effective hardware components and software platform. 

Advanced audio/video-based collision detection algorithms and multisensory/multimodal fusion 

algorithms were developed and integrated into the prototype. We validated the developed system 

through comprehensive experiments on a small-scale testbed. 

7.2 Findings and contributions  
In this project, we have developed four SAV sensor nodes. Each of them consists of an 

omnidirectional vision sensor, a microphone array and the associated data acquisition board. We 

have two versions of this omnidirectional sensor: catadioptric camera and fish-eye camera. We 

have developed the software to interface with the vision in both Windows and Linux OSes. The 

microphone array consists of multiple microphones and a plastic ring which is light and 

adjustable is radius. Two types of data acquisition boards have been tested. One is USB7202 and 

the other is NI 9234.  We also developed the software platform for the networking of multiple 

audio/video sensor nodes. The software platform is based on the ROS (Robot Operating System), 

which is an open source software framework for robots and sensors. 

 The main finding on the video-analysis portion of this project is that it is possible to use very 

low-level features for detecting and tracking moving objects in video. To save computation, 

many of these low-level features can later be used for the accident-detection process. Our work 

provides an intuitive, effective, and computationally efficient alternative to statistical tracking 

techniques. The primary contribution is the development of an efficient algorithm for detecting 

and tracking vehicles which operates by using low-level features and HVS-based modeling. 
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Secondary contributions include a significantly accelerated version of an image similarity 

algorithm (MAD), and a feature-based extension, called F-MAD, which is more robust to motion 

blur and shadows.  

 We used collected audio information from microphone arrays to monitor traffic at 

intersections. Audio source separation and localization simultaneously using microphone arrays, 

and potential car accidents identification based on MFCC features and neural networks were 

developed and implemented. We combined source separation, localization, and collision sound 

detection into a unified system. Various aspects of the system were studied and tested through 

simulations and experiments.  The main contribution lies in that we did not assume any 

knowledge of the signal mixing process, which reflects the situation encountered in practical 

applications more accurately. 

 We implemented a small-scale testbed (or platform) to conduct the experiments that can be 

used to validate our proposed collision detection algorithms.   Our testbed has four main parts: an 

arena, an indoor localization system, automated radio controlled (RC) cars and roadside 

monitoring facilities. First, to mimic traffic environments we built an arena with a wooden floor, 

mock buildings and streets. Second, to facilitate feedback control for trajectory following, an 

indoor localization system was set up to track the RC cars. Third, both autonomous driving RC 

cars and human driving RC cars were developed, based on an automated RC car design. The 

automated RC cars can receive control signals from a computer through an Xbee RF module and 

control the front and rear wheels through motors. A new control algorithm was developed to 

allow the RC cars to track predefined trajectories. Finally, the roadside monitoring system is a 

collection of the smart audio visual (SAV) nodes which can collect both the audio and video data 

from the collision scenario.   

7.3 Implementation 
The results of this project will advance and expand the strategic plan of the OTC in the area of 

safety and security. One of the four key initiatives put forth in the OTC Strategic Plan is 

“Enhancing roadway traffic, transit and infrastructure safety and security through improvement 

of universal mobility, hardening assessment, emergency response preparedness, and 

development of decision support tools for risk assessment and management.” We believe that the 

outcomes of this project have great potential to further push this initiative. In addition, the results 
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of this research will have implications for emergencies and congestion, two of the nine areas 

identified in the 2005 “Critical Issues in Transportation” report put forth by the U.S. 

Transportation Research Board. The underlying technology developed in this project has 

implications for other monitoring applications as well. Intelligent low-cost audio-visual sensors 

with wireless communication capabilities can be used for applications such as wildfire/crop/ 

livestock monitoring thereby further promoting economic growth. 

7.4 Recommendation for Future Work 
In an effort to improve the tracking accuracy, we investigated the use of a statistical tracking 

technique based on a Kalman filter. Although this technique increased the tracking accuracy, its 

major limitation was its extremely high computational complexity. Similarly, although F-MAD 

is more robust to motion blur and shadows, it is not yet suitable for real-time operation. Thus, 

our future work will focus on developing simplified versions of these two algorithms which can 

operate in real-time, yet still yield acceptable tracking performance.   

 For most of the audio analysis, we assumed overdetermined situations, i.e., the number of 

microphones used is more than the number of sound sources. In our future work, we intend to 

explore the more challenging underdertermined audio processing system, which is able to handle 

source separation and localization using fewer microphones. Moreover, we will continue to 

investigate how to relax the stringent requirements on the placement and sampling rate of 

microphones. To improve the system robustness, more studies are needed in harsher 

environments at roadway intersections.   
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