

ECONOMIC ENHANCEMENT THROUGH INFRASTRUCTURE STEWARDSHIP

OKCARS: OKLAHOMA COLLISION ANALYSIS
AND RESPONSE SYSTEM

QI CHENG, PH.D.
DAMON CHANDLER, PH.D.

WEIHUA SHENG, PH.D.

OTCREOS9.1-15-F

Oklahoma Transportation Center
2601 Liberty Parkway, Suite 110
Midwest City, Oklahoma 73110

Phone: 405.732.6580
Fax: 405.732.6586
 www.oktc.org

i

DISCLAIMER
The contents of this report reflect the views of the authors, who are
responsible for the facts and accuracy of the information presented herein.
This document is disseminated under the sponsorship of the Department of
Transportation University Transportation Centers Program, in the interest of
information exchange. The U.S. Government assumes no liability for the
contents or use thereof.

ii

TECHNICAL REPORT DOCUMENTATION PAGE
 1. REPORT NO.
 OTCREOS9.1-15-F

2. GOVERNMENT ACCESSION NO.

3. RECIPIENTS CATALOG NO.

 4. TITLE AND SUBTITLE
OKCARS: Oklahoma Collision Analysis and Response
System

5. REPORT DATE

October 31, 2012

6. PERFORMING ORGANIZATION CODE

 7. AUTHOR(S)

Qi Cheng, Damon Chandler and Weihua Sheng

 8. PERFORMING ORGANIZATION REPORT

 9. PERFORMING ORGANIZATION NAME AND ADDRESS
School of Electrical and Computer Engineering
Oklahoma State University
202 Engineering South
Stillwater, OK 74078

10. WORK UNIT NO.

11. CONTRACT OR GRANT NO.
DTRT06-G-0016

12. SPONSORING AGENCY NAME AND ADDRESS
Oklahoma Transportation Center
(Fiscal) 201 ATRC Stillwater, OK 74078
(Technical) 2601 Liberty Parkway, Suite 110
Midwest City, OK 73110

13. TYPE OF REPORT AND PERIOD COVERED
Final
July 2009- October 2012
14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

 University Transportation Center

16. ABSTRACT

By continuously monitoring traffic intersections to automatically detect that a collision or near-
collision has occurred, automatically call for assistance, and automatically forewarn oncoming traffic,
our OKCARS has the capability to effectively reduce emergency response time, and in turn
potentially save thousands of lives and millions of dollars each year. We have designed and
developed an affordable hardware platform consisting of four smart audio visual (SAV) nodes and a
cellular modem. For networking of multiple nodes, we have also developed a software platform. To
meet the critical and challenging system requirements, we have developed a near realtime vehicle
detection and tracking algorithm requiring modest computing power. As an alternative and
complement detection system, we have developed modules for efficient collision sound recognition
and localization. We have shown that fusion of data from multiple microphone arrays and/or fusion of
results from audio-video subsystems can significantly improve detection accuracy. We have
developed a small-scale testbed for validating and verifying OKCARS and associated algorithms.
OKCARS is non-intrusive, does not require specialized in-car equipment, operates using existing 3G
communication technologies, and is relatively low-cost. It is a significant improvement from traffic
monitoring systems currently available, where a human analyst has to make decisions by constantly
monitoring several video stream inputs. Through improvement of service monitoring and emergency
response preparedness, OKCARS has the potential to enhance roadway traffic safety and security.

7. KEY WORDS
Collision analysis and response, audio-
video sensor, detection/tracking/
recognition/localization, testbed

18. DISTRIBUTION STATEMENT
No restrictions. This publication is available at
www.oktc.org and from the NTIS.

19. SECURITY CLASSIF. (OF THIS REPORT)
Unclassified

20. SECURITY CLASSIF.
(OF THIS PAGE)
Unclassified

21. NO. OF PAGES
105 + covers

 22. PRICE

SI (METRIC) CONVERSION FACTORS

Approximate Conversions to SI Units

Symbol When you
know

Multiply by

LENGTH

To Find Symbol

in inches 25.40 millimeters mm

ft feet 0.3048 meters m

yd yards 0.9144 meters m

mi miles 1.609 kilometers km

AREA

in²
square

inches
645.2

square

millimeters
mm

ft²
square

feet
0.0929

square

meters
m²

yd²
square

yards
0.8361

square

meters
m²

ac acres 0.4047 hectares ha

mi²
square

miles
2.590

square

kilometers
km²

 VOLUME

fl oz
fluid

ounces
29.57 milliliters mL

gal gallons 3.785 liters L

ft³
cubic

feet
0.0283

cubic

meters
m³

yd³
cubic

yards
0.7645

cubic

meters
m³

MASS

oz ounces 28.35 grams g

lb pounds 0.4536 kilograms kg

T
short tons

(2000 lb)
0.907 megagrams Mg

TEMPERATURE (exact)

ºF degrees

Fahrenheit

(ºF-32)/1.8 degrees

Celsius

ºC

FORCE and PRESSURE or STRESS

lbf poundforce 4.448 Newtons N

lbf/in² poundforce

 per square inch

6.895 kilopascals kPa

Approximate Conversions from SI Units

Symbol When you
know

Multiply by

LENGTH

To Find Symbol

mm millimeters 0.0394 inches in

m meters 3.281 feet ft

m meters 1.094 yards yd

km kilometers 0.6214 miles mi

AREA

mm²
square

millimeters
0.00155

square

inches
in²

m²
square

meters
10.764

square

feet
ft²

m²
square

meters
1.196

square

yards
yd²

ha hectares 2.471 acres ac

km²
square

kilometers
0.3861

square

miles
mi²

VOLUME

mL milliliters 0.0338
fluid

ounces
fl oz

L liters 0.2642 gallons gal

m³
cubic

meters
35.315

cubic

feet
ft³

m³
cubic

meters
1.308

cubic

yards
yd³

MASS

g grams 0.0353 ounces oz

kg kilograms 2.205 pounds lb

Mg megagrams 1.1023
short tons

(2000 lb)
T

TEMPERATURE (exact)

ºC degrees

Celsius

9/5+32 degrees

Fahrenheit

ºF

FORCE and PRESSURE or STRESS

N Newtons 0.2248 poundforce lbf

kPa kilopascals 0.1450 poundforce

 per square inch

lbf/in²

iii

iv

ACKNOWLEDGMENTS

The authors gratefully thank and acknowledge the financial support provided by the Oklahoma

Transportation Center (OkTC) and the RITA University Transportation Center Program.

v

OKCARS: OKLAHOMA COLLISION ANALYSIS AND

RESPONSE SYSTEM

Final Report

October, 2012

Qi Cheng, Ph.D.

Principal Investigator

Damon Chandler, Ph.D.

Weihua Sheng, Ph.D.

Co-Principal Investigators

Oklahoma State University

School of Electrical and Computer Engineering

202 Engineering South

Stillwater, OK 74078

October 2012

vi

Table of Contents

EXECUTIVE SUMMARY .. xii

CHAPTER 1

INTRODUCTION... 1

1.1 Background and Objectives .. 1

1.2 Main Contributions ... 2

1.3 Report Organization .. 4

CHAPTER 2

LITERATURE REVIEW .. 5

CHAPTER 3

SYSTEM ARCHITECTURE AND HARDWARE SETUP .. 7

3.1 Development of the Visual Sensor Node .. 7

3.2 Development of the Microphone Array .. 10

3.3 FitPC2 ... 13

3.4 Integration of the Smart Audio Visual Sensor Node .. 13

3.5 Communication ... 14

CHAPTER 4

VIDEO BASED ACCIDENT ANALYSIS ... 15

4.1 General Approach ... 15

4.2 Vehicle Detection .. 16

4.3 Feature Extraction ... 19

4.4 Human Visual System (HVS) Model Analysis ... 25

4.5 Vehicle Tracking ... 25

4.6 Computation of Vehicle Parameters ... 31

4.7 Accident Detection System ... 33

vii

4.8 Improving Matching Robustness via F-MAD ... 38

4.9 Improving Tracking via Kalman Filtering .. 44

CHAPTER 5

AUDIO BASED ACCIDENT ANALYSIS ... 47

5.1 Blind Source Separation and Localization .. 48

5.2 Fusion of Multiple Microphone Arrays .. 60

5.3 Collision Sound Detection .. 62

5.4 Audio/Video Fusion for Decision-Making ... 67

5.5 Outdoor Experiments .. 69

CHAPTER 6

DEVELOPMENT OF A SMALL-SCALE TESTBED ... 73

6.1 Hardware Setup of the Testbed ... 73

6.2 Hardware Design of Automated RC Car... 77

6.3 Autonomous RC Car Control .. 79

6.4 Experimental Results... 84

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS .. 87

7.1 Summary ... 87

7.2 Findings and contributions .. 87

7.3 Implementation.. 88

7.4 Recommendation for Future Work ... 89

REFERENCES .. 91

viii

List of Figures
Figure 3.1 The overall architecture of OKCARS ... 7

Figure 3.2 The catadioptric camera (left) and the fish-eye camera (right) 8

Figure 3.3 The ring area for undistortion of catadioptric camera ... 9

Figure 3.4 Image from the camera after unwrapping ... 9

Figure 3.5 The audio part of a prototype of the SAV node .. 10

Figure 3.6 The Block Diagram of the Microphone Array Platform ... 11

Figure 3.7 Pins definition of DAQ and preamplifier unit ... 12

Figure 3.8 The polarity of the microphone ... 13

Figure 3.9 The audio part of the SAV node: the microphone arrays on a flexible ring 13

Figure 3.10 The prototype of the vision/audio sensor node.. 14

Figure 4.1 Overview of the video analysis portion of the accident detection system 15

Figure 4.2 Block diagram of the processing performed during the vehicle detection stage 16

Figure 4.3 Left: Input frames. Middle: Static blank background. Right: Result of subtraction ... 17

Figure 4.4 Thresholding and morphological processing are used to obtain a binary map of

vehicle pixels .. 18

Figure 4.5 Connected components labeling is used to segment the binary map and assign a

unique label to each detected vehicle .. 18

Figure 4.6 Vehicle regions are extracted from each frame via multiplication with the frame’s

corresponding binary map... 20

Figure 4.7 The centroid of each vehicle is estimated based on the detected vehicle regions 21

Figure 4.8 The orientation of each vehicle is estimated via ellipse-fitting on the detected vehicle

regions ... 23

Figure 4.9 The lightness and color of each vehicle is estimated via an RGB to CIELAB color-

space conversion on each frame followed by averaging the L*, a*, and b* values within each

vehicle region .. 23

Figure 4.10 Extracted vehicles from a particular frame and table of feature values 24

Figure 4.11 Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c)

MAD index for different vehicle comparisons—smaller values denote closer matches. 26

Figure 4.12 Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD

index for different vehicle comparisons—smaller values denote closer matches 27

ix

Figure 4.13 Overall measured d for matched vehicles in two consecutive frames 29

Figure 4.14 Vehicle tracking across nine consecutive frames. The color of each rectangle

denotes the same vehicle across different frames ... 31

Figure 4.15 Vehicle trajectories are estimated by connecting the centroids of tracked vehicles

across multiple frames. ... 33

Figure 4.16 Flowchart of the Accident Detection Algorithm ... 34

Figure 4.17 Illustration of accident detection by identifying rapid changes in speeds 36

Figure 4.18 illustration of accident detection by identifying the change in area that occurs when

two vehicles are detected as a single, combined vehicle .. 36

Figure 4.19 Scatterplot of ground-truth ratings of visual dissimilarity vs. F-MAD’s predictions

on image’s from the CSIQ image database... 42

Figure 4.20 Feature maps used in the F-MAD algorithm for determining vehicle matches 43

Figure 4.21 MAD vs. F-MAD tracking results. F-MAD is better able to handle shadows and

motion blur .. 44

Figure 4.22 Stages of the Kalman-filter-based tracking algorithm... 44

Figure 4.23 Results of Kalman Filtering algorithm .. 46

Figure 5.1 The diagram of the robust audio-based collision detection system 48

Figure 5.2 Spatial configuration of sources and microphones .. 48

Figure 5.3 The spectrograms of different sources .. 56

Figure 5.4 Normalized eigenvalues versus frequencies for different source combinations with

SNR = 30 dB ... 57

Figure 5.5 Correct estimation percentages versus frequencies with SNR = 30dB using AIC and

MDL .. 58

Figure 5.6 MSE versus frequencies for different SNRs with frame length 256 samples using

mixture of source1 and source3 .. 59

Figure 5.7 MSE versus SNRs with frame length 256 samples using average DOA estimates for

mixture .. 60

Figure 5.8 MSE versus SNRs with frame length 256 samples using weighted average DOA

estimates .. 60

Figure 5.9 DOA estimation error vs. the number of iterations ... 62

Figure 5.10 Source location estimation error vs. the number of iterations 62

arni
Cross-Out

x

Figure 5.11 Block diagram of calculating MFCCs ... 63

Figure 5.12 Block diagram of MFCCs based neural network classification 65

Figure 5.13 Neural network confusion matrix .. 67

Figure 5.14 Saliency detection (a) Original image (b) Detected regions of interest based on

image data (c) Detected regions of interest from audio and video fusion 68

Figure 5.15 (a) Video domain pdf (b) Audio domain pdf (c) pdf after video/audio fusion.......... 68

Figure 5.16 a NI cDAQ 9171 USB chassis and four microphones .. 69

Figure 5.17 One example of the experimental setup .. 70

Figure 5.18 The spectrogram of the background noise ... 71

Figure 5.19 Estimated DOAs and original spectrograms for source1 (left) and source2 (right) .. 71

Figure 6.1 The developed testbed for experimental validation... 74

Figure 6.2 Two automated RC cars: (Top) Autonomous driving RC car (Bottom) Human driving

RC car ... 75

Figure 6.3 The setup for manually driving RC cars.. 76

Figure 6.4 The servo motor is mounted in the RC car .. 77

Figure 6.5 The hardware setup for the RC car control ... 78

Figure 6.6 The function blocks of the control board .. 79

Figure 6.7 The architecture of the multi-car control program .. 80

Figure 6.8 Illustration of RC car tracking the virtual vehicle moving in a predefined trajectory 81

Figure 6.9 Low accuracy steering angle of the RC car. The left steering angle range is different

from the right one.. 83

Figure 6.10 Trajectories of the RC car tracking the virtual vehicle moving in circle (Left), the

distance between the RC car and the virtual vehicle (Middle), and the difference between the

actual heading of the RC car and the desired one (Right) .. 85

Figure 6.11 Trajectories of the 3 RC cars tracking the virtual vehicles moving in desired
trajectories (Left), the distance between the RC car and the virtual vehicle (Middle),
and the difference between the actual heading of the RC cars and the desired ones (Right).........86

xi

List of Tables

Table 3.1 Pins connection ... 12

Table 5.1 Parameter settings in simulations ... 55

Table 5.2 Test results analysis .. 66

Table 5.3 Parameter setting for outdoor experiments ... 70

xii

EXECUTIVE SUMMARY
The purpose of this report is to present the results of our research and development of OKCARS:

Oklahoma Collision Analysis and Response System. By continuously monitoring traffic

intersections to automatically detect that a collision or near-collision has occurred, automatically

call for assistance, and automatically forewarn oncoming traffic, the system has the capability to

effectively reduce emergency response time, and in turn potentially save thousands of lives and

millions of dollars each year. Specifically, we have designed and developed an affordable

hardware platform consisting of four smart audio visual (SAV) nodes and a cellular modem.

Each SAV node is equipped with an omnidirectional vision sensor, a microphone array and the

associated data acquisition board, a compact computer. For networking of multiple nodes, we

have also developed a software platform, which is based on the ROS (Robot Operating System),

an open source software framework for robots and sensors. To meet the critical and challenging

system requirements, i.e., near real-time video analysis (10+ frames/second) and modest

computing power, we have developed a vehicle detection and tracking algorithm based on low-

level features and a low-level measure of visual dissimilarity developed to mimic the human

visual system (HVS), which is demonstrated effective for vehicle tracking for the first time. As

an alternative and complement detection system, we have developed modules for efficient

collision sound recognition (mainly based on important audio features Mel Frequency Cepstral

Coefficients) and localization (mainly based on beamforming). We have shown that fusion of

data from multiple microphone arrays and/or fusion of results from audio-video subsystems can

effectively reduce ambiguity and significantly improve detection accuracy. For validating and

verifying OKCARS and associated algorithms, we have developed a small-scale testbed which

consists of an arena to mimic traffic environments, an indoor localization system, automated

radio controlled (RC) cars and our OKCARS. The developed system is non-intrusive, does not

require specialized in-car equipment, operates using existing 3G communication technologies,

and is relatively low-cost. It is a significant improvement from traffic monitoring systems

currently available, where a human analyst has to make decisions by constantly monitoring

several video stream inputs. Through improvement of service monitoring and emergency

response preparedness, OKCARS has the potential to enhance roadway traffic safety and

security.

1

CHAPTER 1

INTRODUCTION

1.1 Background and Objectives
As drivers, we all fear the possibility of being involved in a traffic accident. We are concerned

about damages to our vehicles, injuries to our passengers, and injuries to ourselves and others.

Yet, in the back of our minds, we all have a sense of security that should an accident occur, the

proper authorities will be there to provide assistance. Unfortunately, for many motor vehicle

crashes, this assistance arrives too late.

 When an accident occurs, response time is critical: Every extra minute that it takes for help to

arrive can mean the difference between life and death. Studies have shown that the number of

traffic-related fatalities is highly dependent on emergency response time [1]. This fact is

especially true for states such as Oklahoma in which first responders have a large geographical

area to cover. According to the World Health Organization, traffic-related injuries represent the

leading cause in worldwide injury-related deaths, claiming an estimated 1.2 million lives each

year [2]. Traffic-related injury is among the top-ten causes of worldwide death, a list that

includes tuberculosis, heart disease, and HIV/AIDS. In the United States, it is estimated that

vehicle accidents account for over 40,000 deaths and cost over $164 billion dollars each year.

Among these, passenger-vehicle crashes accounted for the vast majority of deaths [3]. Without

preventative intervention, these figures are estimated to increase by 65% over the next 20 years.

 Given these statistics, we put forth the following question: With today’s advanced

monitoring technology, shouldn’t it be possible to automatically detect if an accident has

occurred and automatically call for assistance? The ability to reduce emergency response time by

even a small amount can potentially save thousands of lives and millions of dollars each year. In

this project, we propose to research and develop such a system which we have titled OKCARS:

Oklahoma Collision Analysis and Response System. The system consists of video cameras and

microphones mounted upon traffic posts at intersections. The system operates by continuously

analyzing the acquired audio and video to extract salient features, determining correspondences

between auditory and visual regions of interest, and then integrating the data within the regions

of interest to determine if an accident has occurred.

2

 The specific aims of our system are (1) to reduce the time required for proper assistance (not

just first responders) to arrive at the scene, and (2) to mitigate further accidents by forewarning

on-coming traffic. It is important to note that no artificial system can replace the accuracy of a

human observer. In automated monitoring, there is always the possibility of a false alarm or the

possibility of failing to detect a true accident. Accordingly, our system uses a combination of

autonomous and human monitoring. If the system deems that the probability that a collision or

detrimental near-collision has occurred surpasses a predetermined threshold, the system will

notify authorities by providing both the probability value and the captured audio and video.

Then, by viewing and listening to the audio-visual data, a human monitor can pre-screen the data

and call for appropriate response (e.g., ambulance or fire). We believe this scheme represents a

logical and feasible tradeoff between sensitivity (low miss rate) and specificity (low false-alarm

rate). The developed system is non-intrusive, does not require specialized in-car equipment,

operates using existing 3G communication technologies, is relatively low-cost, does not disrupt

traffic during maintenance, can provide footage to facilitate accident reconstruction, and has the

potential to stimulate Oklahoma’s economy by facilitating jobs and industry in wireless

communication technology.

1.2 Main Contributions
• In this project, we have developed four smart audio-video (SAV) sensor nodes. Each of

them consists of an omnidirectional vision sensor, a microphone array and the associated

data acquisition board. We have two versions of this omnidirectional vision sensor:

catadioptric camera and fish-eye camera. We have developed the software to interface

with the vision in both Windows and Linux OSes. The microphone array consists of

multiple microphones and a plastic ring which is light and adjustable is radius. Two types

of data acquisition boards have been tested. One is USB7202 and the other is NI 9234.

We also developed the software platform for the networking of multiple audio/video

sensor nodes. The software platform is based on the ROS (Robot Operating System),

which is an open source software framework for robots and sensors.

• We have successfully developed a near real-time video-analysis system for accident

detection. For detection and tracking of the vehicles, our algorithm operates based on

low-level features and a low-level measure of visual dissimilarity developed to mimic the

3

human visual system (HVS). Low-level features (e.g., color, orientation, size) are used

because of their low computational complexity. Although HVS models have found

widespread use in a variety of consumer image processing applications, our work was the

first to demonstrate the effectiveness of HVS models for vehicle tracking. For accident

detection, we implemented a real-time version of an existing algorithm.

• We have tested our algorithm offline on video sequences (saigon01 and saigon02)

obtained from a traffic intersection in downtown Saigon, Vietnam; these videos do not

contain collisions, but are useful for verifying the detection and tracking stages. Ground

truth labels are manually determined for these two videos. Our algorithm achieves a

detection rate of 90-93% and a tracking rate of 88-92%. We further test our system on a

database of videos of a mock intersection obtained from our testbed; these videos contain

both normal driving and collisions. Our algorithm yields an accident detection precision

of approximately 87.5% on these videos.

• We have developed an audio data processing flow chart for accident sound detection and

localization, which includes source separation, accident sound detection and direction of

the accident sound estimation. The frequency domain blind source separation method

turns out to be efficient. Based on our study of the collected online car accident/collision

sound tracks, important audio features such as Mel Frequency Cepstral Coefficients are

identified for accident/collision detection, which can provide high detection accuracy. We

have implemented and tested the method in both simulations and the testbed. We have

implemented the basic sound localization algorithm on the built microphone array and its

performance is limited. Several advanced direction of arrival estimation algorithms are

investigated under different signal and environmental conditions (low and high SNRs,

single and multiple sources). A fusion algorithm that can handle data from multiple

microphone arrays has been proposed. A Bayesian audio/video fusion scheme for general

region of interest detection has been developed.

• We have developed a small-scale testbed to conduct the experiments that can be used to

validate our proposed collision detection algorithms. Our testbed has four main parts: an

arena; an indoor localization system; automated radio controlled (RC) cars; and roadside

monitoring facilities. First, to mimic traffic environments we built an arena with a

4

wooden floor, mock buildings and streets. Second, to facilitate feedback control for

trajectory following, an indoor localization system was set up to track the RC cars. Third,

both autonomous driving RC cars and human driving RC cars were developed based on

an automated RC car design. The automated RC cars can receive control signals from a

computer through an Xbee RF module and control the front and rear wheels through

motors. A new control algorithm was developed to allow the RC cars to track predefined

trajectories. Finally, the roadside monitoring system is a collection of SAV nodes which

can collect both the audio and video data from the collision scenario.

1.3 Report Organization
The rest of the report is organized as follows. Prior studies on automatic incident detection are

summarized in Chapter 2 of Literature Review. In Chapter 3, we explain the architecture and

hardware setup of our proposed system. The video based collision analysis system is presented in

Chapter 4. The audio based collision analysis system and multisensor/multimodal fusion are

presented in Chapter 5. In Chapter 6, we present the development and implementation of a small-

scale testbed. We draw the concluding remarks and provide discussion in Chapter 7.

5

CHAPTER 2

LITERATURE REVIEW
Systems for detecting motor vehicles crashes and other traffic incidents are generally referred to

as Automatic Incident Detection (AID) systems, which are often deployed as part of a broader

intelligent transportation system (ITS). The earliest work on AID dates back to the 1970s [4].

Since that time, several ITS traffic management systems have employed AID; some notable

examples include the Los Angeles Freeway Surveillance and Control Project, the John Lodge

Freeway system, the Tokyo Expressway Control system, and the Tangenziale di Napoli (TANA)

system.

Most incident detection systems are based on the macroscopic behavior of traffic flow.

Traffic is considered as a stream of vehicles, and measurements are made on the global

properties of the stream. For example, loop detectors are commonly used to measure average

velocity, flow rate, and average vehicle occupancy. Unusual deviations from these averages are

then presumed to be an incident. The concept is similar to that of locating a stone in a stream by

looking for disruptions in water flow. Unfortunately, there are several limitations of this flow-

based approach.

First, the averaging process introduces a time delay, which in turn, adds to the overall

emergency response time. Most AID algorithms take several minutes to alert the monitoring

center. For example, the “California Algorithm 7” technology used in the Los Angeles Freeway

Project has an average reaction time of 4.5 minutes [5]. Second, even though AID systems which

rely on flow measurements have proved useful for highways, such systems are not suited for

intersections which necessarily impose a disruption in flow. For example, the TANA system

requires a flow of at least 1,000 vehicles per hour and a minimum speed of 37 miles/hour,

requirements which obviously cannot be met at an intersection. Finally, many AID systems are

considered flawed. Either they yield too many false alarms, too many missed detections, or they

are not adaptable to changing environmental conditions. According to [5], “some Departments of

Transportation have shut down their AID algorithms altogether because of the problems that they

have had.”

These limitations have driven recent efforts toward the use of video-based systems, which

employ video cameras and analysis algorithms to monitor traffic [6-8]. The application of

6

machine vision for traffic monitoring has previously been used mainly for acquiring traffic

figures such as numbers of vehicles, speed data, and amount of congestion [7]. More recently,

these techniques have been applied to automatic incident detection [8]. For example, in [9],

Ikeda et al. propose a video-based system for detecting stopped/slowed vehicles and fallen

objects. In [10], Veeraraghavan et al. propose the use of a Kalman filter for detecting accident-

prone incidents. In [6], Kamijo et al. employ a spatiotemporal Markov random field for tracking,

and a Hidden Markov Model for incident detection; this is one of the very few systems designed

specifically for intersections.

Yet, despite its promise, video-based AID suffers from one very serious shortcoming: It is

prone to false alarms when environmental conditions change. For example, rain creates glare and

reflections which are consequently misinterpreted as vehicles and/or obstructions. Shadows and

occlusion are particularly problematic for vehicle tracking. Moreover, at nighttime, normally

reliable features such as shape and color are unavailable. According to [11], changes in

environmental conditions have been shown to give rise to a false-alarm rate as high as 50-80%.

A simple and effective solution to these problems is to use other senses beyond just vision. In

particular, for collision detection, auditory information can be a very important indicator of

whether a crash has occurred. Typical collisions are accompanied characteristic audio signatures

which can be detected and localized. When audio is coupled with video, much greater detection

accuracy can be realized than using either modality alone. This strategy of combining audio and

video falls under a research thrust known as multimodal fusion. Furthermore, to overcome issues

related to occlusion and shadows, one can fuse video/audio captured from multiple viewpoints

(multiviewpoint fusion).

7

CHAPTER 3

SYSTEM ARCHITECTURE AND HARDWARE SETUP
As shown in Figure 3.1, the OKCARS consists of a set of Smart Audio-Video (SAV) nodes,

connected through an 802.3 Ethernet bus. Each SAV node consists of an omnidirectional camera,

four mini microphones, and a small-form-factor eBox-3850 computer. One of the SAV nodes is

designated as the master node and has interfaces to a wireless modem to access the cellular

network for accident reporting purposes and for communicating with a roadside electronic sign

for alerting. This OKCARS system hardware is reconfigurable and expandable. The minimum or

basic configuration consists of only one master SAV node, a cellular modem and a roadside

electronic sign. More SAV nodes can be added to allow an enlarged field of view and improved

accuracy through multiviewpoint fusion. This system can be seamlessly integrated into the

existing infrastructure of many intersection control and management systems.

eBox-3850
Computer

Cellular
Modem Roadside

Electronic Sign

Omnidirectional
Camera and

Microphone Array

Ethernet

SAV Node

Figure 3.1 The overall architecture of OKCARS

3.1 Development of the Visual Sensor Node
Two different types of cameras are used, which include catadioptric cameras and fish-eye

cameras. Both are omni-directional cameras. The catadioptric camera consists of a hyperbolic

8

mirror and a Firefly MV sensor from Point Grey Research. The fish-eye camera is a surveillance

camera named Q24 from Mobotix Company.

The cameras are shown in Figure 3.2. For the purpose of real-time processing, we develop

the C/C++ interface for the cameras to obtain the data without the software provided by the

companies, and then to process the data using open source libraries such as ROS and OpenCV.

Figure 3.2 The catadioptric camera (left) and the fish-eye camera (right)

3.1.1 Catadioptric Camera

Similar to most catadioptric optical systems, the catadioptric camera consists of two parts: the

small and affordable imaging camera Firefly MV and the hyperbolic mirror. A mini USB2.0

interface is provided for the data transmission and power supply. The FlyCapture software

development kit (SDK) is provided by the company. So we use it directly to obtain the raw data

from the camera. First we need to add the FlyCapture library to the project path so we can use

the functions and then we put the obtained image in the RAM and then different algorithms can

be applied on the raw data. We use the OpenCV library for video processing.

One problem for the catadioptric system is that the original image captured from the camera

is distorted as shown in Figure 3.3, which is not convenient for image processing. So a simple

algorithm is developed to unwrap the distorted image to a panoramic image. The algorithm is

based on the projection from a ring area to a rectangle area. The result is shown in Figure 3.4. It

can achieve a frame rate of around 4 fps with a resolution of 1280 x 960 (original) and 2500 x

330 (unwrapped) pixels which ensures real-time processing. The unwrapped images contain a

9

360 degree view of the environment which enables the robots to perform some tasks better, such

as searching and navigation.

Figure 3.3 The ring area for undistortion of catadioptric camera

Figure 3.4 Image from the camera after unwrapping

3.1.2 Fish-eye Camera Q24

The fish-eye camera (Q24) is capable of providing four different views simultaneously. The

panoramic view is selected so that it can cover the surrounding area of the mobile platform. The

camera provides a highest resolution of 3 Megapixels and color images scalable from 160 x 120

to 2048 x 1536, and it uses an Ethernet-based interface. The features of the camera (including

resolutions, frame rates, etc.) can be easily adjusted by sending a web request. Moreover, the

zooming and panning of the camera lenses can be done by the virtual PTZ function. The camera

10

itself is a web server so that the stream of live images can be obtained by setting up a socket

connection.

The Q24 camera is a commercial product for the purpose of security and surveillance so the

SDK for the camera is not available. Our solution to get the raw images from the Q24 camera is

to use the Libcurl library to establish an Internet connection to grab the current image from the

web server. Libcurl is a free and easy-to-use client-side URL transfer library, supporting

different Internet protocols and services. Libcurl is highly portable, and it builds and works

identically on numerous platforms. In this way, we can store the image in the RAM of the

computer. After that, different algorithms can be applied on the raw data. Here we use OpenCV

library for the vision processing. It can achieve a frame rate of around 7-8fps with a resolution of

800 x 600 pixels which ensures the real-time processing.

3.2 Development of the Microphone Array
The audio part of the audiovisual node is shown in Figure 3.5. The hardware platform supports

up to 8 channels microphones. The DAQ (Data Acquisition Equipment) in the platform supports

maximum 100 KSamples/second throughput sampling rate, or 50 KSamples/second on any one

channel. The DAQ USB-7202 used in this project is a general purpose DAQ. Therefore, a

preamplifier board is designed to amplify the signal acquired from the microphones and output to

the DAQ. An example code based on C++ is developed to read the data from USB-7202. The

code also provides a Matlab interface to call Matlab functions.

Figure 3.5 The audio part of a prototype of the SAV node

Microphones

DAQ Board

Preamplifier

Array

11

3.2.1 The USB-7202 DAQ

USB-7202 is a USB bus-powered DAQ module with eight, 16-bit analog inputs and eight digital

I/O lines; for Message-Based DAQ - Designed for OEMs.

• 8 channels of 16-bit analog input

• 100 kS/s max total throughput (200 kS/s Burst Mode), 50 kS/s on any one channel

• 8 digital I/O lines

• One 32-bit event counter

• Simultaneous sampling (1 A/D converter per input)

• Stackable 3.55" x 3.75" board dimensions

• Develop on one computing platform, deploy on many with out-of-the-box support

for Windows® and Linux®

• Simple messaging protocol

• Small software footprint

• Included accessories: USB cable and a CD containing the DAQFlex DAQ

Software API, a Windows® installer file (msi), and a Zip file containing

installation files for Linux® operating systems

• RoHS compliant

3.2.2 Design of the Microphone Array

Figure 3.6 shows the simplified block diagram of the hardware platform.

USB-7202
DAQ

Microphone
Array PC

USB

USB bus-powered

Preamplifier
Unit

Figure 3.6 The Block Diagram of the Microphone Array Platform

http://www.mccdaq.com/images/photos_500/usb-7202-stacked-rf_500.jpg

12

3.2.3 Steps to Use the Microphone Array

1. Install USB driver and software MCC 7000 (DAQ Software ver 1_3_0_0.ZIP).

2. Connect the preamplifier unit board to the USB DAQ as shown in Figure 3.7 and Table

3.1.

3. Connect the microphones to the input of the preamplifier unit. Make sure the positive pin

of the microphone connect to IN* and the negative pin connect to GND as shown in

Figure 3.8.

4. Power on the hardware platform. Plug the USB cable to the PC.

5. Read the sampling data.

USB-7202 DAQ Preamplifier unit

Figure 3.7 Pins definition of DAQ and preamplifier unit

Table 3.1 Pins connection

DAQ Pre Unit DAQ Pre Unit DAQ Pre Unit DAQ Pre Unit

1 16 6 11 11 6 16 1

2 15 7 10 12 5 39 34

3 14 8 9 13 4 40 33

4 13 9 8 14 3

5 12 10 7 15 2

13

Figure 3.8 The polarity of the microphone

We also developed a flexible ring mount for the microphones. This improved microphone array

is shown in Figure 3.9.

Figure 3.9 The audio part of the SAV node: the microphone arrays on a flexible ring

3.3 FitPC2
The FitPC2 is used as the computation engine for the integrated SAV node. The FitPC2 is a

small, light netbook computer which includes an Intel Atom Z5xx Silverthorne processor

(1.1/1.6/2.0 GHz options), up to 2GB of RAM and 160GB SATA Hard Drive. We run the

Ubuntu Linux OS on this FitPC2 and the Robot Operating System (ROS) to provide the

networking capability.

3.4 Integration of the Smart Audio Visual Sensor Node
Finally we integrate both the audio and video part to make a whole node which is shown in

Figure 3.10.

Positive

Negative

14

Figure 3.10 The prototype of the vision/audio sensor node

3.5 Communication
The cellular modem will deliver a video clip of the suspected collision or near-collision to a

remote computer located in a control center monitored by local authorities.

FitPC2

DAQ

Board

Omnidirectional

Vision Sensor

Microphone

Array

15

CHAPTER 4

VIDEO BASED ACCIDENT ANALYSIS
An important stage in an automatic vehicle monitoring system is the detection of accidents via

video analysis. By analyzing frames of the captured video, it is possible to track the movements

of vehicles. With such tracking, data about the vehicles, such as speed, change in speed, and

change in orientation, can be determined. Finally, these data can be used to estimate the presence

of an accident (collision).

 In this chapter, we describe the video-analysis portion of the accident detection system that

was researched and developed in this project. Figure 4.1 shows a block diagram of the system.

4.1 General Approach
As shown in the Figure 4.1, image sequences are obtained from the video camera mounted on a

pole at the traffic intersection. The image sequences are fed to the accident detection system

where the occurrence of an accident is determined. The accident detection system consists of the

following stages: (1) vehicle detection, (2) features analysis, (3) vehicle tracking, and (4) vehicle

Figure 4.1 Overview of the video analysis portion of the accident detection system

Figure 4.2 Block diagram of the processing performed during the vehicle detection stage

parameter extraction and accident detection.

 In addition to the image input, some side information is input to the system: the stored

background image, threshold values for the image processing, information about the position and

orientation of the camera, camera calibration parameters, and frame rate of the video sequence.

After analyzing the image sequence, the system identifies the moving vehicles in the image and

tracks them using low-level features. After the vehicles are tracked in each frame, the speed,

orientation, position, and area of each tracked vehicle are used to estimate the occurrence of an

accident. If an accident is detected, the system signals the detection to a monitoring station.

4.2 Vehicle Detection
Vehicle detection is an important stage of the accident detection system in which the moving

vehicles are segmented from the background. Figure 4.2 shows a block diagram of the vehicle

detection subsystem.

The method that is used for detecting moving vehicles is background subtraction, a very

computationally efficient technique. Because our research has focused on real-time video

analysis, other background modeling techniques that have high computational cost were

attempted, but not actually employed. Because the testing of the algorithm was done offline, and
16

17

Figure 4.3 Left: Input frames. Middle: Static blank background. Right: Result of subtraction

because the position of the camera was fixed, we used a stored background frame for use in

background subtraction. After the vehicle regions are detected, suitable low-level features are

extracted from the vehicle regions. The process of vehicle detection is explained in detail in the

following sections.

4.2.1 Background Subtraction

The first step in the vehicle detection algorithm is to subtract the background from the current

input frame to detect the vehicles. Figure 4.3 shows examples of background subtraction method.

Here, a frame at time t from the input video along with the previously acquired background

frame (containing no vehicles) is fed as input to the algorithm. The algorithm subtracts the

intensity value of each pixel in the frame It(x,y) from the background image Ibk(x,y) resulting in a

difference image Idiff(x,y) given by

𝐼𝑑𝑖𝑓𝑓(𝑥, 𝑦) = |𝐼𝑡(𝑥,𝑦) − 𝐼𝑏𝑘(𝑥,𝑦)|

18

 As mentioned, this background subtraction step is performed to detect moving objects

since the static objects are part of background. Thus, we are left with the intensity values of

moving objects in the difference image Idiff(x,y).

Figure 4.4 Thresholding and morphological processing are used to obtain a binary map of vehicle pixels

Figure 4.5 Connected components labeling is used to segment the binary map and assign a unique label to
each detected vehicle

19

4.2.2 Thresholding and Morphological Processing

The difference image Idiff(x,y) is converted into a binary image bw(x,y) using a specific threshold

value T as follows:

𝑏𝑤(𝑥, 𝑦) = �
1, 𝐼𝑑𝑖𝑓𝑓(𝑥,𝑦) ≥ 𝑇
0, 𝐼𝑑𝑖𝑓𝑓(𝑥,𝑦) < 𝑇

The value of T was empirically chosen to be 0.1.

 The binary image bw(x,y) obtained from thresholding suffers from noise and unwanted

pixels. Therefore, the morphological operations of opening followed by closing are applied to the

binary image bw(x,y) to obtain a final binary image bwfinal(x,y). Figure 4.4 shows the

thresholding and morphological processing operations on example frames. The final binary

image bwfinal(x,y) indicates pixels corresponding to detected vehicles.

4.2.3 Connected-Component Labelings and Region Extraction

The regions in the binary image bwfinal(x,y) are labeled using connected-components labeling.

This process assigns a label to each region in the binary image (see Figure 4.5). From this

process, the number of vehicles detected in the image is estimated. After connected-components

labeling, the binary map is used to guide analysis of the original input frame It(x,y); we

specifically focus only on those regions in which the vehicle are detected.

4.3 Feature Extraction
After the regions containing vehicles are detected, suitable low-level features are extracted from

these vehicle regions. Five features are used: area, centroid, orientation, luminance, and color.

These features were chosen due to their low computational complexity. Let Xi {i= 1, 2, 3...}

denote the individual vehicle regions detected in the input image It(x,y), and let fk(Xi) denote the

kth feature.

4.3.1 Bounding Box

From the connected component labeled image, the bounding-box coordinates of each vehicle

region are calculated. From the bounding-box coordinates, the height and width information of

the vehicle region is estimated. These bounding-box coordinates are used to calculate the

features of a particular vehicle region. Figure 4.6 shows an example of extracted vehicle regions.

20

Figure 4.6 Vehicle regions are extracted from each frame via multiplication with the frame’s corresponding
binary map.

4.3.2 Area

Let f1(Xi) denote the area of region Xi. Area is defined as the total number of pixels N in the

region Xi. The expression for f1(Xi) is given by

𝑓1(𝑋𝑖) = 𝑁 ∈ 𝑋𝑖

The area of a particular vehicle region is given by the number of white pixels in the binary map

of each vehicle (see Figure 4.6).

4.3.3 Centroid

Let f2(Xi) denote the area of region Xi. The centroid is defined as the center of mass of the region

Xi. The expression for f2(Xi) is given by

𝑓2(𝑋𝑖) = �
𝑥1 + 𝑥2 + ⋯𝑥𝑛

𝑁
,
𝑦1 + 𝑦2 + ⋯𝑦𝑛

𝑁
� = (𝑥,� 𝑦�)

21

Figure 4.7 The centroid of each vehicle is estimated based on the detected vehicle regions

where x1, x2,…. xn denote the points along the horizontal plane of the image and y1, y2,…. yn

denote the points along the vertical plane of the image. Figure 4.7 shows an example of the

centroid of vehicle regions.

4.3.4 Orientation

Let f3(Xi) denote the orientation of region Xi. The orientation is determined by the bounding box

of each vehicle region. Orientation is defined as the angle in degrees between the x axis and

major axis of the ellipse that has the same second moments as region Xi. Figure 4.8 illustrates the

orientation of a vehicle region. Figure 4.8 (left) shows a vehicle region and its corresponding

ellipse. Figure 4.8 (right) shows the same ellipse, with features indicated graphically; the solid

black lines are the axes. The orientation is given by the angle between the horizontal dotted line

and the major axis of the ellipse.

The expression for f3(Xi) is given by

22

𝑓3(𝑋𝑖) = �

1
2
𝑐𝑜𝑡−1 �

𝑎 − 𝑐
𝑏

� , 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 < 𝑐
𝜋
2

+
1
2
𝑐𝑜𝑡−1 �

𝑎 − 𝑐
𝑏

� , 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 > 𝑐

where a, b is the semi-length of the of the major axis and minor axis of the ellipse, respectively

and 𝑐 = √𝑎2 − 𝑏2 .

4.3.5 Luminance and Color

Let f4(Xi) and f5(Xi) denote the average luminance and average color of the region Xi. These two

features are given by

𝑓4(𝑋𝑖) = 𝐿∗� (𝑋𝑖)

 𝑓5(𝑋𝑖) = �𝑎∗���(𝑋𝑖),𝑏∗���(𝑋𝑖)�

where 𝐿∗� ,𝑎∗���, 𝑏∗��� denote the average 𝐿∗,𝑎∗, 𝑏∗ measured in the CIE 1976 (𝐿∗,𝑎∗, 𝑏∗) color space

(CIELAB). The value of L* ranges between 0 and 100, while the values of a* and b* ranges

between negative to positive values. Figure 4.9 shows the RGB image converted to L* a* b* color

space.

4.3.6 Feature Vector

All the above features discussed earlier are grouped together in a feature vector of a particular

region Xi. The feature vector is given as ft(Xi)

𝒇𝑡(𝑋𝑖) = [𝑓1(𝑋𝑖),𝑓2(𝑋𝑖),𝑓3(𝑋𝑖),𝑓4(𝑋𝑖),𝑓5(𝑋𝑖)]

Examples of regions extracted from a frame and the corresponding feature values are shown in

Figure 4.10.

23

Figure 4.8 The orientation of each vehicle is estimated via ellipse-fitting on the detected vehicle regions

Figure 4.9 The lightness and color of each vehicle is estimated via an RGB to CIELAB color-space
conversion on each frame followed by averaging the L*, a*, and b* values within each vehicle region

24

Features (a) (b) (c) (d) (e) (f) (g)

Area (pixels) 237 1208 217 56 220 1455 1382
Centroid
(pixel)

𝑥̅ 44 89 84 200 195 190 299

𝑦� 25 78 178 171 73 15 67
Orientation (degrees) -22.5 -10.5 -15.7 57 44 -5.1 -13
Luminance 64 83.1 61 67.7 69.8 56.5 69.2
Color 𝑎∗��� 1.06 -0.1 -0.21 3.72 1.3 -0.4 0.4

𝑏∗��� -0.78 -0.4 1.26 -0.83 -0.15 -2.1 -0.2

Figure 4.10 Extracted vehicles from a particular frame and table of feature values

25

4.4 Human Visual System (HVS) Model Analysis
The features described in the previous section can assist in tracking vehicles across multiple

frames. However, these features do not explicitly take into account the overall visual appearance

of each vehicle as gauged by the human eye. To model this aspect, we employ a visual similarity

estimator, called MAD (Most Apparent Distortion) [12]. Given two images or image regions,

MAD will return an index which is proportional to how dissimilar the two images appear to a

human observer. MAD operates by using a combination of a visual detection model and a visual

appearance model. The detection-based stage models of the human contrast sensitivity function,

luminance masking, and contrast masking to gauge subtle (near-threshold differences). The

appearance-based stage employs a log-Gabor transform and local comparisons of log-Gabor

coefficient statistics in an attempt to model the visual appearance of clearly visible differences.

The MAD index is computed via a weighted geometric mean of these two model outputs.

 Here, we use MAD to assist in tracking by searching for the vehicle in the next frame that

mostly closely matches (i.e., yields the lowest MAD index) for a given vehicle in the current

frame. Specifically, after the regions in the frames It and It+1 are detected, they are subjected to

MAD analysis. In this step each of the regions Xi {i= 1, 2, 3...} frame It are compared one-by-

one with each of the regions Xj {j= 1, 2, 3...} in frame It+1. Thus the regions in It forms the first

input to MAD algorithm and the regions in frame It+1 form the second input to MAD algorithm.

 The output for each comparison is denoted by dMAD(Xi, Xj). If a particular region in frame

It+1 matches with a region in frame It, MAD should yield an index close to zero, meaning that

the vehicles detected in frame It+1 and It are the same. Examples of MAD analyses are shown in

Figure 4.11 and Figure 4.12. The regions have been resized to a common size (of at least 64x64

pixels) as required by MAD. A lower MAD index denotes a closer visual match between the

vehicles. As demonstrated in Figure 4.12, MAD can yield decent matching results even when

some features of the regions are of deficient (such as color and luminance).

4.5 Vehicle Tracking
The tracking is done via corresponding via: (1) Searching for the region in frame It+1 whose

features most closely match the features of the given region in frame It and (2) searching for the

region in frame It+1, with the lowest MAD index as compared to the given region in frame It.

26

(a) (b)

(c)

Figure 4.11. Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for
different vehicle comparisons—smaller values denote closer matches.

27

(a) (b)

(c)

Figure 4.12 Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for
different vehicle comparisons—smaller values denote closer matches

28

4.5.1 Feature Distance

In this step the feature vector of the regions extracted from frames It and It+1 are used. For the

purpose of tracking the vehicles accurately across each frame, we use the Euclidean distance

between the feature vector of each region Xi {i= 1, 2, 3...} in It and the feature vector of each

region Xj {j= 1, 2, 3...} in It+1.

 Let ft(Xi) denote the feature vector of the ith region extracted from frame It and let ft+1(Xi)

denote the feature vector of the jth region extracted from frame It+1. Let dfeatures(Xi, Xj) denote the

distance between ft(Xi) and ft+1(Xi), which is given by

𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠�𝑋𝑖,𝑋𝑗� = ��𝒇𝑡(𝑋𝑖,) − 𝒇𝑡+1�𝑋𝑗��
2

Thus, the smaller the value of dfeatures(Xi, Xj), the more the two vehicle regions (Xi and Xj) match

in terms of area, centroid, orientation, lightness, and color.

4.5.2 Weighed Combination of Feature Distance and MAD analysis

The above equation for dfeatures(Xi, Xj) provides one measure of dissimilarity between vehicle

regions in frame It and It+1. This dissimilarity measure can be improved by combining

dfeatures(Xi, Xj) with a MAD index dMAD(Xi, Xj) to compute an overall dissimilarity measure

between the vehicle regions. For this purpose dfeatures(Xi, Xj) and dMAD(Xi, Xj) are combined

using weights. The overall similarity measure d (Xi, Xj) is given by:

𝑑�𝑋𝑖,𝑋𝑗� = 𝛼𝑑𝑀𝐴𝐷�𝑋𝑖,𝑋𝑗� + (1 − 𝛼)𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠�𝑋𝑖,𝑋𝑗�

where α is the weighting factor. The value of α was empirically chosen to be 0.9. Finally the

closest matching between vehicle regions in frame It and frame It+1 is determined by searching

for the minimum value resulting from the weighted combination output d (Xi, Xj) and is given by

𝑗∗ = arg𝑚𝑖𝑛𝑗 �𝑑�𝑋𝑖,𝑋𝑗��

 Tracking is done typically between two consecutive frames It and It+1. Figure 4.13 shows

results of this technique for two representative frames.

29

Frame at time t. Frame at time t+1.

Extracted vehicles from frame at t. Extracted vehicles from frame at t+1.

Matches based on minimum distance.

Figure 4.13 Overall measured d for matched vehicles in two consecutive frames

 Since the tracking is done between two consecutive frames at a time, for rest of the instances

of the system, the information of the vehicles in frame It+1 are carried over to the next tracking

step between frames It+1 and It+2, and thus it is not to extract the vehicle information in frame

It+1, since this information is already computed in the previous step, thus saving time and

computation. In subsequent steps, the vehicle information in the upcoming frames (It+2, It+3, It+4,

…) are extracted and are compared with the vehicle information obtained in the previous frames

(It+1, It+2, It+3, ...) to track the vehicle as explained earlier. For the purpose of tracking, when the

vehicle information computed in the previous frames (e.g., It+1) are carried over in the next step,

30

the vehicles in It+1 are labeled in the order they occurred in the frame It and then compared with

the vehicle information in the frame It+2, thus the system will be able to know which vehicle it is

tracking. This process is repeated for the upcoming frames.

 If a match for a particular vehicle region in frame It cannot be found in the frame It+1, the

vehicle is assumed to have left the scene, and thus the vehicle is no longer tracked and its

information is not carried over to the next step. Similarly, if a new vehicle region is detected in

frame It+1, the features of the vehicle are extracted and used for tracking in the upcoming frames.

 Specifically, when searching for the minimum index from the overall similarity measure

d(Xi, Xj), to find the matching vehicles between frames It and It+1, suppose a vehicle found in

frame It has left the scene in frame It+1. In this case, the system still tries to find the closest

matching vehicle in frame It+1 corresponding to a vehicle region in frame It , which is not a true

match of the vehicle in It since it has left the scene in It+1, but this scenario is unknown to the

system. In order to overcome this situation, when the system finds a false match to a vehicle in

It, the area and centroid position of the vehicle in search belonging to It is compared to the

falsely matched vehicle in It+1. Since they are false matches the Euclidean distance between the

area and centroid of these vehicles should be larger than some predefined threshold value. If this

condition is satisfied, the system is informed that there was a false match and instructed that the

vehicle under search has left the scene.

 There may also be situations in which the Euclidean distance may be lesser than the

threshold value. In these cases, other features such as the orientation and color information of the

vehicles are used in addition to the area and centroid. Since the comparisons between the

vehicles are done between consecutive frames, the area and centroid information of the vehicles

are effective in finding the false matches in most of the cases. Similarly, when a new vehicle

region is detected in It+1 but not previously detected in It, the scenario of false matches cannot be

encountered since the system searches for close matches only for the vehicles belonging to It in

It+1.

 Examples of tracked vehicles across nine frames are shown in the Figure 4.14. A colored

rectangle is drawn around each vehicle. It can be seen that the color of the rectangle around each

vehicle across the frames remains the same, indicating that the vehicles are detected and tracked

correctly.

31

Figure 4.14 Vehicle tracking across nine consecutive frames. The color of each rectangle denotes the same

vehicle across different frames

4.6 Computation of Vehicle Parameters
After the vehicles are detected and tracked, vehicle parameters such as speed and trajectory are

computed using some of the features extracted during tracking.

4.6.1 Speed of the Vehicles

The speed of a particular vehicle region Xi in frame It is computed using the distance traveled by

the vehicle in frame It+1 and the frame rate of the video from which the image sequence are

extracted. The distance traveled by the vehicle is computed using the centroid positions of the

vehicle in It and It+1.

32

 Let Xi denote a particular vehicle detected in It, and Xj denote the same vehicle detected in

It+1, assuming the correspondence between the vehicles is determined using the vehicle tracking

stage. The speed of a particular vehicle region Xi is given by:

𝑆𝑝𝑒𝑒𝑑(𝑋𝑖) =
��𝑥̅(𝑋𝑖)−𝑥̅�𝑋𝑗��

2
+�𝑦�(𝑋𝑖)−𝑦��𝑋𝑗��

2

1
𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒

The above equation gives the speed of the vehicle in terms of pixels/sec. In order to determine

the speed of the vehicle in terms of real-world units (miles/hr), a camera calibration process is

used. Based on the calibration mapping, the centroid positions of a particular vehicle in It and

It+1 are converted from pixel coordinates to real-world coordinates. From this step, the speed of

the vehicle in terms of (miles/hr) is determined. A similar process is repeated for all the vehicle

regions detected and tracked. As an example, for 15 frames/sec video, the speed of three vehicles

(in pixels/second) are computed as follows:

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑎) =
3.16 𝑝𝑖𝑥𝑒𝑙𝑠
1

15 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 47.4 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑏) =
4.48 𝑝𝑖𝑥𝑒𝑙𝑠
1

15 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 67.2 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑐) =
2.83 𝑝𝑖𝑥𝑒𝑙𝑠
1

15 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 42.45 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐

Since the camera is assumed to be parallel to the ground plane, a scaling factor was obtained by

comparing the known vehicle width and height with the pixel width and height of the vehicle as

found in the image sequence. The scale factor that relates pixel distance to real-world distance

was approximately found to be (1 pixel ≃ 0.00001 km). The speed of the vehicle is in terms of

miles/hr is then given by:

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑎) = 11 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑏) = 15 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑐) = 10 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟

These speeds are typical of vehicles at traffic intersections. Therefore the assumption of the

camera placed parallel to the ground plane to capture the video holds good in this case.

33

Frame at time t. Frame at time t+1.

Estimated trajectory for each vehicle.

Figure 4.15 Vehicle trajectories are estimated by connecting the centroids of tracked vehicles across
multiple frames.

4.6.2 Trajectory of the Vehicles

Similar to finding the speed of the vehicles, the trajectories of the vehicles are also estimated

using the centroid information of the vehicles in frame It and It+1. A line fit is made connecting

the centroid of a particular vehicle detected and tracked correctly in It and It+1 from the instant

the vehicle enters the scene until it leaves the scene. Figure 4.15 illustrates the vehicles’

trajectories obtained for frame It to It+n.

4.7 Accident Detection System
After the parameters are extracted, the next step is to determine the occurrence of an accident by

using the parameters. We employed the algorithm of Ki and Lee [13] for the implementation of

the accident detection system. Figure 4.16 shows a flowchart of the accident detection algorithm.

34

Figure 4.16 Flowchart of the Accident Detection Algorithm

4.7.1 Variation in Speed of the Vehicles

The speed of a vehicle is an important factor toward determining the occurrence of crashes at a

traffic intersection. A rapid change in speed is a useful descriptor for a traffic accident. For

example, if a particular vehicle travels with a particular velocity, after an occurrence of an

accident, there is rapid change in the velocity. Therefore variation in the velocities of the

vehicles across frames is used as a factor for estimating the occurrence of crashes by the system.

In the accident detection system, vehicles are detected and tracked correctly and their velocity

information is extracted at each frame the vehicle occurs.

 After successful tracking of a vehicle in two consecutive frames It and It+1, the velocity

information of the tracked vehicle obtained from It and It+1 is compared with that obtained from

It-1 and It. Since it is assumed that the vehicles moves at an approximately constant velocity, if a

vehicle crashes with another vehicle in frame It+1, the velocity of the vehicles is expected to go

down drastically. So when the velocity of the vehicle determined in It+1 is compared with that

35

obtained in It, there should be a large difference in the velocity of the vehicle indicating that a

crash has occurred. Thus, to determine the occurrence of an accident, the difference in velocity

of vehicles obtained between two consecutive frames is compared with a predefined threshold:

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = ∆𝑣 = 𝑣 𝑎𝑡 𝐼𝑡+1 − 𝑣 𝑎𝑡 𝐼𝑡. The following expression is used for the

traffic accident detection algorithm:

𝑉𝐼 = 𝑓(𝑥) = � 1, 𝑖𝑓 ∆𝑣 ≥ 𝑎
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where VI is the velocity index and a is the speed threshold. Figure 4.17 shows a scenario for

accident detection.

4.7.2 Variation in Area of the Vehicles

A rapid change in the area of the vehicles is also used to aid in accident detection. When an

accident occurs, two vehicles come into contact and there is a possibility that the bounding box

of the vehicles may intersect; in this case, there is a rapid change in the area of the vehicles

detected. To detect accidents, the area of the vehicles detected and tracked in It and It+1 are

compared; if the change in area of the vehicles exceeds an area threshold, then there may be

possibility of accident: Change in area= ∆area=area at I_(t+1)- area at I_t. Thus, the following

expression is used as a factor for traffic accident detection:

𝐷𝐼 = � 1, 𝑖𝑓 ∆𝑎𝑟𝑒𝑎 ≥ 𝑏
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where DI is the area index and b is the area threshold. Figure 4.18 shows a scenario for accident

detection using the change in area.

36

Figure 4.17 Illustration of accident detection by identifying rapid changes in speeds

Figure 4.18 Illustration of accident detection by identifying the change in area that occurs when two
vehicles are detected as a single, combined vehicle

37

4.7.3 Variation in Position of the Vehicles

Change in the centroid position of the vehicles in frames It and It+1 can be used as a factor to

determine the occurrence of accident. As with the change in area, when an accident occur,s the

bounding boxes of two vehicles intersect, causing a change in the estimated positions of the

vehicles. Therefore a change in the centroid of a vehicle in consecutive frames can be used as a

descriptor to determine the occurrence of an accident. The change in centroid is given by:

∆𝑥̅ = 𝑥̅ 𝑎𝑡 𝐼𝑡+1 − 𝑥̅ 𝑎𝑡 𝐼𝑡

∆𝑦� = 𝑦� 𝑎𝑡 𝐼𝑡+1 − 𝑦� 𝑎𝑡 𝐼𝑡

The following expression is used as a factor for traffic accident detection:

𝑃𝐼 = �1, 𝑖𝑓 ∆𝑥̅ ≥ 𝑐, 𝑖𝑓 ∆𝑦� ≥ 𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where PI is the position index and c,d are thresholds.

4.7.4 Variation in Orientation of the Vehicles

Variation in orientation of the vehicles can also be used as a factor to determine the occurrence

of an accident. As in the case of speed, area, and centroid, the orientations of a particular vehicle

in frames It and It+1 are compared: 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = ∆𝛳 = 𝛳 𝑎𝑡 𝐼𝑡+1 − 𝛳 𝑎𝑡 𝐼𝑡 . The

orientation index OI is given by:

𝑂𝐼 = �1, 𝑖𝑓 ∆𝛳 ≥ 𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where e is the threshold for change in orientation of the vehicles.

4.7.5 Overall Accident Index

After computing the velocity, area, position, and orientation index of the vehicles, the overall

accident index is determined by the sum of individual indices. The overall accident index is then

compared with a preselected threshold to determine the occurrence of accident. If the accident

index exceeds the threshold, then an occurrence of accident is signaled, otherwise the system

determines that there is no accident and the process is repeated until an accident is detected. The

overall accident index (AI) is given by:

𝐴𝐼 = 𝑉𝐼 + 𝐷𝐼 + 𝑃𝐼 + 𝑂𝐼

38

The occurrence of accident is determined by:

𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 = � 1, 𝑖𝑓 𝐴𝐼 ≥ 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The accident detection algorithm is summarized as follows:

1. Vehicle regions are detected in image frames.

2. Low-level features such as area, orientation, centroid, luminance and color of the

detected vehicles are extracted.

3. Vehicles are tracked using the tracking algorithm.

4. Speeds of the tracked vehicles are calculated.

5. Velocity, Area, Position and Orientation Indexes are calculated.

6. Overall Accident Index is calculated using the sum of individual indexes and occurrence

of accident is identified.

4.7.6 Locating the Accident

Upon the occurrence of an accident, the next step is to locate the point at which the accident has

occurred. This information can be obtained by using the positions of the vehicles that were

involved in the accident at a particular frame. By using this information, the end user is not only

informed about the occurrence of the accident, but the user is also provided the point at which

the accident has occurred within the recorded video clip. This location information can be used

by the end-user’s display software to direct the user’s attention to the crash location. This

location information can also be used to encode the recorded video, for example, via region-of-

interest encoding to facilitate rapid transmission of the video over lower-bandwidth networks

(e.g., 3G networks).

4.8 Improving Matching Robustness via F-MAD
To better deal with motion blur and shadows, we recently developed a new feature-based image

quality assessment algorithm. Our goal was to use features which are robust to changes in shape

and lighting, and are therefore less sensitive to occlusions and shadows which can degrade the

vehicle detection performance.

 We specifically developed a feature-based variant of MAD—called F-MAD—which uses

five feature maps: sharpness, luminance, edge strength, color distance, and contrast. All five

39

features maps are combined in order to accomplish the work of MAD by calculating the peak

signal to noise ratio between feature maps of the two to-be-compared vehicle images. The

following subsections described the computation of the features. In this discussion, let 𝑋 denote

an image containing a vehicle, and 𝑥 denote a block of 𝑋. Let 𝑓𝑖(𝑥) denote a feature

measurement for block 𝑥, and let 𝑓𝑖(𝑋) denote the corresponding feature map.

4.8.1 Lightness and Color Distance

Let 𝑓1(𝑥) denote the Euclidean distance between the average lightness of block 𝑥 and the

average lightness of the image. Let 𝑓2(𝑥) denote the Euclidean distance between the average

color of block 𝑥 and the average color of the image. These two features are given by:

𝑓1(𝑥) = |𝐿�∗(𝑥) − 𝐿�∗(𝐵)|

𝑓2(𝑥) = �[𝑎�∗(𝑥) − 𝑎�∗(𝐵)]2 + [𝑏�∗(𝑥) − 𝑏�∗(𝐵)]2

where 𝐿�∗, 𝑎�∗, 𝑏�∗denote the average L∗, a∗, b∗ measured in the Commission Internationale de

i’Eclairage (CIE) 1976 (L∗, a∗, b∗) color space (CIELAB). Let R’, G’, B’ denote the nonlinear

RGB values of the image, the conversion from RGB color space to L∗a∗b∗ is implemented by

first linearizing the R’, G’, B’ values to be proportional to light energy, assuming sRGB values:

𝐴 = �
𝐴′

12.92
, 𝐴′ < 0.04045

[(𝐴′ + 0.055)/1.055]2.4, 𝐴′ > 0.04045

where 𝐴 = 𝑅, 𝐺, or 𝐵.

 The linearized 𝑅, 𝐺, 𝐵 values are then converted to the CIE XY Z color space as:

𝑋 = 0.412453 ∗ 𝑅 + 0.357580 ∗ 𝐺 + 0.180423 ∗ 𝐵,

𝑌 + 0.212671 ∗ 𝑅 + 0.715160 ∗ 𝐺 + 0.950227 ∗ 𝐵,

𝑍 = 0.019334 ∗ 𝑅 + 0.119193 ∗ 𝐺 + 0.950227 ∗ 𝐵.

 Finally the L∗, a∗, b∗ values are given by

𝐿∗ = 116 ∗ 𝑔 �
𝑌
𝑌𝑟
� − 16,

𝑎∗ = 500 ∗ [𝑔(𝑋 𝑋𝑟⁄) − 𝑔(𝑌 𝑌𝑟⁄)] ,

40

𝑏∗ = 200 ∗ [𝑔(𝑌 𝑌𝑟⁄) − 𝑔(𝑍 𝑍𝑟⁄)] ,

where Xr = 0.950456, Yr = 1, Zr = 1.088754 are the CIE XY Z tristimulus values of the D65

reference white point; and the function g is given by:

𝑔(𝑡) = �
 𝑡1/3, 𝑡 > 0.008856,

7.787 ∗ 𝑡 +
16

116
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4.8.2 Contrast

Local contrast can also be an important factor which influences an image's visual appearance. To

measure this, we first convert the image into the luminance domain. Then, the root mean square

(RMS) contrast of each block is given by ratio of standard deviation to the mean of pixel values

of the respective block. The result is a map in which each value represents local contrast.

 Specifically, let 𝑙(𝑥) denote the luminance of an image block 𝑥. The contrast feature, denoted

by 𝑓3(𝑥), is given by:

𝑓3(𝑥) = �
𝜎𝑙(𝑥)/𝜇𝑙(𝑥), 𝜇𝑙(𝑥) > 0
0, 𝜇𝑙(𝑥) = 0

where 𝜎𝑙(𝑥) and 𝜇𝑙(𝑥) denote the standard deviation and mean of 𝑙(𝑥), respectively.

4.8.3 Edge Strength

To quantify similarity between object boundaries, we use maps of local edge strength. First,

edges are detected by using Robert’s edge detector. Then the edge strength of each block is

computed by averaging the number of detected edge pixels within that block. The result is a map

in which each value represents local edge strength.

 Specifically, let 𝑓5(𝑥) denote the edge strength of block 𝑥. Let 𝐸 denote the binary edge map

computed by running the Roberts edge detector on the entire frame. The feature 𝑓5(𝑥) is then

given by:

𝑓5(𝑥) = 𝜇𝐸(𝑋) =
1
𝑚2�𝑒𝑗

𝑗

where 𝐸(𝑥) is the corresponding block of 𝑥 in 𝐸, and 𝑒𝑗 is a pixel of 𝐸(𝑥).

41

4.8.4 Sharpness

The sharper an image the better is its quality. If the image is blurred, we are not able to clearly

distinguish between neighboring objects. Blurring also reduces the ability to visually recognize

objects. Thus, sharpness can prove to be a useful feature for estimating image similarity.

 For measuring local sharpness, we employ our own S3 sharpness map algorithm [14] in

which local sharpness is measured in both the frequency domain and the spatial domain. In the

frequency domain, the image is divided into 32x32 pixel blocks with 75% overlap. We then

measure the slope of the power spectrum averaged across all orientations. In the spatial domain,

we divide the image into 8x8 pixel blocks and measure local total variation. The two sharpness

measurements are then combined via a geometric mean. The result is a map in which each value

represents local sharpness.

4.8.5 Computation of F-MAD

For determining image similarity between two images 𝑋1 and 𝑋2, we first compute the five

feature maps for both the reference image and the distorted image. Next, we compute the peak

signal to noise ratio (PSNR) between the feature maps of the two images. We also compute the

linear correlation coefficient between the corresponding maps from the two images. Finally, we

multiply correlation coefficients with corresponding PSNRs and then sum them up, as follows:

𝑠𝑢𝑚𝑃𝑆𝑁𝑅 = �𝑃𝑆𝑁𝑅�𝑓𝑖(𝑋1),𝑓𝑖(𝑋2)�
5

𝑖=1

where 𝑓𝑖(𝑋1) and 𝑓𝑖(𝑋2) denote the 𝑖P

th feature map for images 𝑋1 and 𝑋2, respectively.

 To compute the final image dissimilarity index, we combine 𝑠𝑢𝑚𝑃𝑆𝑁𝑅 with the output from

the original MAD algorithm via a weighted geometric mean:

𝐹_𝑀𝐴𝐷 = (𝑑𝑑𝑒𝑡𝑒𝑐𝑡)𝛼(𝑑𝑎𝑝𝑝𝑒𝑎𝑟)𝛽𝑠𝑢𝑚𝑃𝑆𝑁𝑅−𝛾

where 𝑑𝑑𝑒𝑡𝑒𝑐𝑡 and 𝑑𝑎𝑝𝑝𝑒𝑎𝑟 denote the outputs of MAD’s detection-based and appearance-based

stages, respectively. The parameters 𝛽 and 𝛾 are given by 𝛽 = 1− 𝛼
2

 and 𝛾 = 1 − 𝛼 − 𝛽, where

𝛼 is the blending parameter computed in the original MAD algorithm (see [12]).

42

R² = 0.9256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30

G
ro

un
d-

Tr
ut

h
Ra

tin
gs

F-MAD

Figure 4.19 Scatterplot of ground-truth ratings of visual dissimilarity vs. F-MAD’s predictions on image’s
from the CSIQ image database

 Figure 4.19 shows a scatterplot of ground-truth ratings of visual dissimilarity vs. F-MAD’s

predictions on images from the CSIQ image database [12]. On this database, F-MAD is able to

yield estimates of visual dissimilarity which correlate highly with the ground-truth data.

4.8.6 Results of F-MAD on Vehicle Tracking

Figure 4.20 shows the five feature maps obtained for a representative video frame obtained from

our indoor testbed. Figure 4.21 shows a frame corresponding to the occurrence of an accident.

Here, because of the motion blur and presence of shadows, MAD was unable to correctly track

both vehicles and was thus unable to detect the collision. F-MAD, on the other hand, was

successful at tracking both cars, and thus the use of F-MAD allowed the system to correctly

detect the accident. On average, F-MAD is able increase tracking accuracy by 10-15%.

Yet, despite the improved tracking accuracy afforded by F-MAD, the algorithm is too

computationally complex for a real-time implementation. We have devoted a considerable

amount of research, in collaboration with a computer engineer, toward improving the

computational efficiency of both MAD and F-MAD. Although we were able to accelerate MAD,

the computation of the feature maps in F-MAD—particularly, the sharpness map—remains a

43

Original frame Lightness Distance map

Color Distance map Contrast map

Edge Strength map Sharpness map

Figure 4.20 Feature maps used in the F-MAD algorithm for determining vehicle matches

44

bottleneck in F-MAD. Currently, F-MAD requires 2-3 seconds per frame. Developing a real-

time version of F-MAD remains a goal of our future research.

MAD tracking result F-MAD tracking result

Figure 4.21 MAD vs. F-MAD tracking results. F-MAD is better able to handle shadows and motion blur

4.9 Improving Tracking via Kalman Filtering
The segmentation and tracking algorithm described in

the previous sections uses only spatial information; no

motion information deduced from multiple frames is

used. To investigate the effectiveness of using such

motion analysis, we implemented and evaluated a

Kalman-filter-based algorithm, and outline of which is

shown in Figure 4.22. The goal is to segment the

foreground (vehicles) from the background while

simultaneously tracking the foreground objects. We

model the background statistically from the first few

frames instead of mere background subtraction. The

algorithm first loads the data and some parameters for

background modeling (Nedler-Mead Optimization

parameters for background adaptation) and tracking

(Kalman Parameters). Based on the set parameters, the

algorithm starts modeling the background. Next, the

Load Image

Get Parameters

Background Adaptation

BG Parameter Update

Segment – FG & BG

Predict

Measurement Update

Figure 4.22 Stages of the Kalman-filter-
based tracking algorithm

45

image is segmented into foreground and background. The foreground objects are then given to

the Kalman filter for prediction and tracking. Finally, measurement of the actual positions of

objects in the frame is performed, and tracking (Kalman) parameters are updated accordingly.

 Demonstrative results of the Kalman Filtering algorithm are shown in Figure 4.23. We

observed that separation of frame sequences into background and foreground starts by the second

frame, and object detection and tracking occurs within three frames. (The number in the top-right

corner of each frame in Figure 4.23 represents the frame number.) The implemented Kalman

algorithm can be used for wide number of settings. It is largely independent of the specific

environment because the background is modeled and continuously updated; thus, lighting and

weather conditions have little impact on the algorithm. However, as with the F-MAD algorithm,

the background modeling and prediction stages of the Kalman-filter-based algorithm are too

computationally expensive to be practical, particularly when numerous vehicles must be tracked.

Our attempts to accelerate this process via simplifications of the algorithm reduced tracking

accuracy to the point that the benefits afforded by the algorithm were negligible. Developing a

version of the Kalman-filter-based tracking which can operate in real-time, yet still yield

acceptable tracking performance, remains a goal of our future research.

46

Figure 4.23 Results of Kalman Filtering algorithm. (a) Input Frame. (b) Segmented into background and
foreground (marked red). (c) Image used for modeling background and foreground. (d) Tracking result.

47

CHAPTER 5

AUDIO BASED ACCIDENT ANALYSIS
Video data alone cannot guarantee high accuracy in an accident detection system in some cases,

because it could be easily affected by occlusions, changes in illumination, and limitations of

segmentation and identification algorithms [15]. As one of the most common sensing modalities,

audio information is widely used in traffic monitoring systems [16]. Audio sensors, such as a

simple microphone, are cost effective, and can act as a computationally efficient alternative

detection device. Signals collected by the microphones contain important audio information

when traffic accidents occur. In real world environments, crash sounds are usually mixed with

other distinct sound sources in the monitored environment. For example, horn blaring or multiple

collisions at different locations may occur at the same time.

In order to collect high-quality audio information and improve the performance of the

collision detection system, an array of microphones can be used to replace a single microphone,

due to the following advantages. Firstly, it may be electronically aimed to collect a high quality

signal from a desired source. In this regard, a microphone array has the potential to outperform a

single and highly-directional microphone. Secondly, a microphone array does not need local

placement of transducers, which will not require any physical movement to alter its direction of

reception. Besides, it has capabilities that a single microphone does not have, such as the

automatic detection, localization, and tracking of sound sources in its receptive area. In traffic

scene analysis, the coordinates of accidents may help emergency services locate potentially

injured persons. Since traffic accidents are usually accompanied with a high-pitched sound

resulting from sudden deceleration and/or a loud impact sound due to collision, these features

can be extracted and used for traffic accident detection.

In this chapter, an audio processing system is presented to monitor traffic and identify

potential collisions by collaborating with the video processing system described in the previous

chapter. The system consists of a module for separation and localization of received audio

signals at microphone arrays, and a module for crash sound detection of the separated signals.

The whole system is summarized in Figure 5.1.

2

0o

Audio

signal

Micro-

phone

array

Mixed

signal

separation

Collision

sound

detection

Collision

sound

DOA

estimation

Figure 5.1 The diagram of the robust audio-based collision detection system

5.1 Blind Source Separation and Localization

s1

s2
sm

s
M

d1 d2 dn d
N
 -90o +90o

Figure 5.2 Spatial configuration of sources and microphones

A linear array with N microphones is assumed and each microphone is with a known location

dn with respect to the center of the array. There are M audio sources, each with direction of

arrivalθm , 1,m M= , . Here, we deal with the overdetermined case, i.e., M N< . Figure 5.2

shows the spatial configuration of sources and microphones. Based on the central limit theorem

(CLT), it’s assumed that noise n(t) is zero mean additive white Gaussian noise across the

microphones. The received signal for microphone n in an anechoic environment can be written
M

as xn ()t =∑anmsm (t −τ nm) + n tn () , where anm is the attenuation factor,τ nm is the relative arrival
m=1

lag between source m and microphone n , τ θnm = dn sin m / c , and c is the propagation velocity of

48

the sound in the medium. The direction orthogonal to the array is 0 degree, and

θ ∈ −[π π/ 2, / 2] . It is also assumed that anm is uniform for all source and microphone pairs,

M

which is generally valid in a far filed. Therefore, xn ()t =∑ sm (t −τ nm) + n tn () .
m=1

Using a K -point short time discrete Fourier transform, we have
M

X (,p f) =∑S (,p f)e− j f2π τnm
n m + Nn (,p f)

m=1

where p is time frame index and f represents the frequency value.

1 K−1 f

S
− j k2π

m (,p f) = ∑ s (,p k e) K ,
K m

k=0

1 K 1 f

Nn n(,p f) = ∑
−

n (,p k e
− j k2π

) K ,
K k=0

f = F ks (−1) / K , and k is the time index in a frame, and Fs is the sampling frequency. Due

to the linearity of DFT, the noise is additive in the frequency domain. At one particular

frequency, the noises at different microphones are uncorrelated. Moreover, signals and noises at

this frequency are uncorrelated. The model can be written in a compact form:

X(,p f) = A S(f) (,p f) +N(,p f) ,

where S(,p f) = [S T
1 2(,p f), S (,p f),, SM (,p f)] ,

X(,p f) = [X1 2(,p f), X (,p f),, X (,)]T
N p f , and A(f) is a N M× matrix with each column

a(θ) = [e e− −j2π θfd1 sin m /c , ,j2π fd2 sinθm /c  − n /
m ,e j2π fdN msi θ c] .

The frequency-domain blind source separation separates the X(,p f) for all the frequencies bins

to recover s()t . That is,

S (,p f) = W X(f) (,p f) ,

where S (n,)f = [S S 
1 2(p f,), (p f,), ,S (p f,)]T

M is the recovered signal vector, and W(f) is

the M N× demixing matrix. The main object here is to perform blind source separation and

localization. That is, to get { }θm , and the demixing matrix estimates W (f) for f F= 0, , / 2  s .

Finally, the inverse STFT is used to recover the source signals s()t .

49

5.1.1 Preprocessing

Before using subspace methods, the observed mixtures are normalized into zero mean and unit

variance, which ensures that the signals at each frequency are also zero mean. It should be

emphasized that although audio signals are generally non-stationary, a short duration of the

signals are assumed to be approximately stationary. This is why subspace methods can be

applied, which is corroborated by the results of computer simulation and real world experiments.

5.1.2 Subspace Methods

The covariance matrix of X(f) is RXX (f E) = {X X(f) H (f)}. In reality, it is approximated by

1RXX ∑
P P

(f) = 1 (,) H
P X Xp f (,p f) and E{X X(f)}= ∑ (p f,) , where P is the frame number.

p=1 P p=1

We can write

RXX (f) = A(f E) [S S()f H H(f)]A (f) +RNN (f) ,

1 P

where RSS (f) = E[S S()f H H()f] = ∑S(p f,)S (p f,) .
P p=1

The generalized eigenvalue decomposition is used to perform subspace computation as

follows:

R VXX (f) (f) = RNN (f)V(f)Λ(f),

where V(f) = [v v1 2(f f), (),, vN (f)] , Λ(f) = diag{λ λ1 2(f), (f),,λN (f)}, λ λi j(f) ≥ (f),

for i j> , and vi (f) is the eigenvector corresponding to eigenvalue λi (f) . It is well-known that

the largest M eigenvectors form the basis for the column space R f{A()} of A(f) and the

remaining N M− eigenvectors form the basis of the orthogonal complement R f{A()}⊥ of

R f{A()}. The subspaces R f{A()} and R f{A()}⊥ are the signal subspace and noise subspace,

respectively.

The ambient noise N(f) is almost omnidirectional and the correlation is small [17] . It is

reasonable to assume that noise covariance matrix is R I(f) =σ 2
NN f M , where σ 2

f is an unknown

constant for frequency f . Without loss of generality, we assume σ 2
f =1for all frequencies.

50

51

Thus, the generalized eigenvalue decomposition becomes the standard eigenvalue decomposition

R Vxx (f) (f) = V(f)Λ(f) .

For arbitrary arrays, the MUSIC algorithm can be employed to estimate the DOAs. It

computes the following pseudo-spectrum as a function of θ :

a aH ()θ θ()
Pf ()θ = f f

a EH H ,
f ()θ θN (f f)EN f()a ()

where E v(f) = [(f f), , v ()] anda (θ) = [e e− j2π θfd1 sin /c , ,− j2π fd2 sinθ /c − j2π fdN sinθ /c T
N M +1  N f ,e] . The

M largest peaks in the spectrum correspond to the M source directions. One drawback of the

MUSIC algorithm is that it needs to compute the spectrum values for all directions, which results

in huge computational burden. Also, the peak search algorithm further adds the computational

cost.

Conversely, the ESPRIT algorithm directly gives DOA estimates after obtaining the signal

subspace, while it applies only to a uniform linear array. It is conducted as follows [18]:

(1) Choose the eigenvectors corresponding to the M largest eigenvalues and form the matrix

S1(f) = [v v1 2(f f), (),, vM (f)] , A1(f f) = [IN−1]0 S1() , A2 (f f) = [0 I]N−1 1S () We get .

the matrix μ(f) = (A AH
1 (f f) (−

1)) 1A AH
1 (f) 2 (f) , where IN−1 is the N −1 dimension

identity matrix, and 0 is a N −1 dimension vector with all zero elements.

(2) It’s known that the eigenvalues {λu (f)}of μ(f) correspond to

{e ej2π fd sinθ1 2/c , j2π fd sinθ /c , , e j2π fd sinθM /c}. Therefore, the estimated DOAs can be

computed according to arcsin{Im{ln(λ πu (f))c / (2 fd)}}, where arcsin(⋅) is the inverse

sine function, Im(⋅) gives the imaginary part of a complex number, and ln(⋅) is the

natural logarithm operator.

After having multiple DOA estimates θm (f) at various frequencies f , we will apply some rules

to obtain final DOA estimates{ }θm .

5.1.3 Final DOA Determination

At each frequency, we have the DOA estimates of the sources. However, because of the

differences in signal power, noise power and thus SNRs, the estimated DOAs can vary a lot.

Therefore, how to choose the frequencies with high SNRs and combine the estimates together is

a crucial issue. Since high SNRs ensure better DOA estimates, we try to use the DOA estimates

from frequency components with high SNRs. In reality, only mixtures are given, and thus true

SNRs are unknown.

In simulations, noises are assumed to be additive white Gaussian. Therefore, noise power is

almost equally distributed among different frequencies, while signal power is different at

different frequencies. Thus, the mixtures’ SNRs at different frequencies are generally

proportional to the signal power at corresponding frequencies and thus to the mixture power. The

mixture power at different frequencies here is represented by the sums of squared amplitudes

(SSA) of the mixture spectrograms at corresponding frequencies. We choose the DOA estimates

at the frequencies with high SSA values. However, the SSA’s values are attributed to multiple

source signals’ contribution in signal power. Therefore, the separate SNRs may be quite different

and so are their DOA estimates. We use the average of the DOA estimates or the weighted

average normalized by the SSA values to mitigate this effect. In the experiments, noises are

mostly at low frequencies and we choose relatively high frequencies in which noises are

generally much less. The same method for simulations is then applied.

To summarize, we adopt the following rule: Firstly, use principle component analysis (PCA)

to get M principle components at each frequency f . That is, we have X X(,p f) = S H
1 (f) (,p f) ,

for p P=1,, . Then, choose Q frequencies { f qq}, 1,= ,Q with the largest P percent sum of
P

squared amplitudes (SSA). Namely, SSA at frequency f : SSA(f) =∑ X(,p f)
2

. Then, the
p=1

Q

final estimates are obtained by averaging the DOA estimates at these frequencies θ θ 
m =∑ m q()f

q=1

or using the weighted average of the DOA estimates.

After getting the DOAs{ }θm , we can get A (f) = [a a(θ θ 
1 2) () (a θ M)] . Demixing matrix

W (f) for each frequency can be obtained by using the least square estimates with the constraint

W A (f)  (f) = I . That is, W (f) is the pseudo-inverse of A (f) . Then, we get

S (,p f) = W X (f) (,p f) for all frequencies. Using the inverse DFT, we can recover the time

domain source signals{s(t)} .

52

5.1.4 Related Issues

Source Number Estimation

In the previous section, the number of sources is assumed to be known beforehand and

smaller than the number of microphones. In fact, the source number can be determined by

analyzing the eigenvalues { ()}i fΛ of the spatial correlation matrix of the mixtures at frequency

f . That is, the number of dominant eigenvalues is equal to the number of sources. Therefore, a

subjective threshold on the eigenvalues can be set to estimate the source number. Another

approach is to use the information theoretical criteria. Akaike information criteria (AIC) [19] and

minimum description length (MDL) [20, 21] are two common criteria for source number

estimation. Theoretically, AIC is more likely to give an overestimation, while MDL gives

unbiased estimation [22] .

Frequency Bin Selection

It is known in array signal processing that, for a broadband signal, its high frequency

components prefer small array spacing, while its low frequency parts prefer large spacing. In

reality, a given microphone array is fixed and signals of interest can be different. In [23], the

authors have talked about using microphones with different spacing to handle different frequency

ranges respectively. That is, considering that we need multiple microphones’ observations to

perform localization, we may select only a subset of microphones to perform the localization for

lower frequency signals, as long as the source number is less than the number of chosen

microphones. Therefore, a microphone array can handle a wider range of signals.

Microphone arrays sample signals in the space domain. Similar to the aliasing problem in

time domain sampling, microphone array also experience spatial aliasing problem. The well-

known Nyquist sampling theory tells that if we recover a signal with the highest frequency fmax ,

we use sampling rate 2 fmax at least. In the spatial sampling, it requires that half of the minimum

wavelength of a wideband signal should be larger than the interval of the array it impinges. To be

more specific, for spacing d, the minimum wavelength it can capture is d / 2 and therefore the

maximum frequency is 2 /c d , where c is the velocity of sound in the medium. In our problem,

53

the phase delay between two microphones should be smaller than π in modulus, i.e.,

2π fd sinθ π≤ . We only focus on the frequency range where no spatial aliasing occurs. On the

other hand, if the frequency of a signal is too low and thus its wavelength is too long, the arra

ff

y

can hardly capture the small amount of phase change of the sound signal. Therefore, a low cuto

frequency is also set. Although audio signals are naturally broadband, we can only consider some

specific frequency range, at which the algorithm can estimate the DOAs more accurately.

Performance Measure

The performance measures for algorithm evaluation are the mean squared error (MSE) of

DOA estimates and the signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR), and

signal-to-artifacts ratio (SAR) for separation, which are firstly introduced in [24]. The MSE for

source m at frequency f is computed as

1MSEm f (2
, = ∑ θ θm (f) − m) ,

I I

where I is the number of Monte Carlo runs. For separation, it’s assumed that the recovered

source signal can be decomposed as

s sˆm = target + einterf + +enoise eartif ,

where starget is a modified version of sm with allowed distortion, einterf , enoise , and eartif are

respectively the interferences, noise, and artifacts terms. The existing algorithms for recovered

signal decomposition and SDR, SAR, and SIR computation can be found in [24].

5.1.5 Simulations

In the simulations, there are N = 4 microphones uniformly and linearly distributed with spacing

d = 0.05 . Two sources M = 2 are located at directions θ1 = 40 and θ2 = 40 degrees,

respectively. Source signals include music and speech and they are normalized into signals with

zero mean and unit variances. The velocity of sound in the air is c = 340m/s . The sampling rate

is 16KHz. The noise is set to be additive white Gaussian noise (AWGN) with variance σ 2 across

microphones. It is noted that for audio signals, the power at different frequencies are different,

while for white noise, the power at different frequencies are ideally equal. The signal-to-noise

ratio is set to be 10log 2
10 (M /σ) . We only consider the frequency range without spatial aliasing.

54

55

That is, in our simulation, f ≤ c / (2d) . We run 10000 Monte Carlo runs for each SNR.

Additionally, in all simulations, due to the inability of a microphone array to capture low

frequency signals, we set a lower frequency threshold to be 1500 Hz. The parameter setting in

simulations is summarized in Table 5.1.

Table 5.1 Parameter settings in simulations

Mixture Characteristics Parameters to be Specified

Number of Sources M 2

Source Categories Speech & Music

Source Length 4 Seconds

Source Angles +/- 40 degrees

Noise Type AWGN (sensor noise)

Number of Microphones N 4

Array Spacing d 0.05

Sampling Rate sF 16KHz

Mixture Type Pure Delay

Mixture Domain Frequency Domain

Frame Length 256

Frame Shift 256

FFT Window Rectangular

Monte Carlo Runs 10000

56

Figure 5.3 The spectrograms of different sources: source1: male speech (top left), source2: female

speech (top right), source3: piano (bottom left), and source4: trumpet (bottom right)

Source Spectrograms

Audio signals’ diversity in time-frequency characteristics can be illustrated by their

spectrograms, which are the signals’ amplitude values at particular time-frequency points. It’s

known that there is a tradeoff between time and frequency resolutions in spectrogram

representation. That is, a high frequency resolution results in a low time resolution, and vice

versa. Figure 5.3 shows the spectrograms of several source files with sampling rate 16KHz and

frame length 256 samples, equal to 3.2 milliseconds. Source1 and source2 are respectively male

and female speeches. Source3 and source4 are corresponding piano and trumpet music. They

show typical time-frequency characteristics for each category. That is, speeches possess wide

spectrum and short time duration, while music consists of harmonic frequencies.

57

Source Number Estimation

Eigenvalue based Method

Figure 5.4 shows the normalized eigenvalues of the correlation matrix at different

frequencies for different source combinations at SNR = 30dB with frame length 256 samples.

The plots are obtained by averaging the results over total 10000 runs. It is clear that for different

sources, the whole trend of how eigenvalues changes with frequency is different. With SNR = 30

dB, the first two eigenvalues are much larger than the rest two eigenvalues for most of the

frequencies. It’s easy to set a subjective threshold to decide the source number. That is, when the

signal power is dominant in the mixture, using eigenvalue analysis to estimate source number is

suitable.

Figure 5.4 Normalized eigenvalues versus frequencies for different source combinations with

SNR = 30 dB for mixture of source1 and source3 (left) and mixture of source2 and source4

(right)

58

Information Theoretical Criteria

Now we talked about information theoretical criteria, which include Akaike information

criterion (AIC) and minimum description length (MDL). Figure 5.5 shows the percentage of

correct source number estimates in total 10000 runs at SNR = 30dB using AIC and MDL. It is

clear that the source estimation using MDL is 100 percent accurate and better than the estimation

using AIC.

Figure 5.5 Correct estimation percentages versus frequencies with SNR = 30dB using AIC and

MDL for mixture of source1 and source3 (top two) and mixture of source2 and source4 (bottom

two)

Localization Performance

Figure 5.6 shows the MSE with respect to different frequencies using 10000 Monte Carlo

runs with frame length 256 samples for different SNRs using mixture of source1 and source3. It

is obvious that with higher SNRs, the MSE performance is much better. For different source

files, the patterns of MSE versus frequency curves are very different. This is likely to be related

to the SNR difference of different signals at different frequencies and at different time locations.

In other words, it is because of the differences in time frequency characteristics for different

source files.

59

Figure 5.6 MSE versus frequencies for different SNRs with frame length 256 samples using mixture of
source1 and source3

Frequency Bin Selection for DOA Estimation

Figures 5.7 and 5.8 show the MSE of DOA estimates versus SNRs using the average and

weighted average of the DOA estimates at the frequencies with the largest 30% percent SSA.

The results using two methods have little difference and the MSE monotonically decreases with

an increasing SNR.

60

Figure 5.7 MSE versus SNRs with frame length 256 samples using average DOA estimates for

mixture of source1 and source3 (left) and mixture of source2 and source4 (right)

Figure 5.8 MSE versus SNRs with frame length 256 samples using weighted average DOA

estimates for mixture of source1 and source3 (left) and mixture of source2 and source4 (right)

5.2 Fusion of Multiple Microphone Arrays
In this section, we consider separation and localization of multiple sources using multiple

microphone arrays. The multisource condition further complicates the problem, which

necessitates the separation step. Instead of performing BSS and DOA estimation at each array

independently, and then fusing DOAs for localization, the proposed scheme handles all of the

above processing simultaneously. The estimation problem is formulated as a constrained

optimization problem, which can be solved in a distributed manner using the alternating direction

method of multipliers. Each array exchanges only tentative DOA information with others in the

iterative algorithm. Due to the mutual constraints, multiple arrays can collaboratively solve for

61

the unmixing matrices, DOAs and locations while avoiding the traditional permutation and

scaling issues.

 The whole algorithm contains the following steps:

(1) Initialization: Each array is given initial values of all variables: �𝐖𝑙
(0)(𝑓)�, �𝜃𝑠𝑙

(0)�, and

�𝑢𝑠
(0), 𝑣𝑠

(0)�, 𝑠 = 1, … , 𝑆, 𝑙 = 1, … , 𝐿,𝑓 = 1, … ,𝐾.

(2) In-array processing: for iteration i and array l, update estimates �𝐖𝑙
(𝑖)(𝑓)�, �𝜃𝑠𝑙

(𝑖)�, and

�𝑢𝑠
(𝑖), 𝑣𝑠

(𝑖)� according to (10), (11) and (13), 𝑠 = 1, … , 𝑆,𝑓 = 1, … ,𝐾.

(3) Inter-array communication: each array broadcast its �𝜃𝑠𝑙
(𝑖)�

𝑠=1

𝑆
 to all the other array. If the

stopping criteria (i.e., the difference between the estimates of the variables from two

consecutive iterations are smaller than a predefined number) are satisfied, final estimates

are achieved. Otherwise, i:=i+1 and go back to step (2).

 Experiments are conducted in order to evaluate the performance of the proposed algorithm.

We consider a simple setup with 2 sound sources, 3 microphone arrays, and each array equipped

with 2 microphone elements. 3 seconds of audio data are obtained at each microphone. The

sampling rate is 8 KHz. The frame length is 125 ms and the frame shift is 2 ms. The distance

between the two microphone elements in an array is d = 0.04m, which satisfies the condition of

being smaller than half of the minimum wavelength (0.085/2 m) in order to avoid the spatial

aliasing effect. The coordinates of the three arrays are (3,4), (5,5), and (7,4), and the orientations

are 10◦, 20◦, and 30◦, respectively. The two sources are located at (4,7) and (6,6), respectively. A

conventional method is implemented for comparison, which consists of two steps. First, for each

array, the ICA method with the directivity pattern is used to estimate unmixing matrices and

DOAs. Then, based on all DOAs, the source locations are estimated using the triangulation

technique.

 It is generally difficult to find a direct measure to evaluate the estimates of unmixing

matrices. Since they are closely related to DOAs, to evaluate the performance of the signal

separation, we examine the DOA estimation performance. Figure 5.9 shows the DOA estimation

error for both the proposed algorithm and the conventional two-step algorithm. We can clearly

see that due to the information exchange between the arrays, after a few iterations our proposed

62

algorithm converges to DOA estimates that are much closer to the ground truth than the

conventional two-step method. To evaluate the performance of the source localization, we

calculate the source location estimation error as shown in Figure 5.10. The proposed algorithm

gives much more accurate source location estimates than the conventional triangulation method.

Figure 5.9 DOA estimation error vs. the number of iterations

Figure 5.10 Source location estimation error vs. the number of iterations

5.3 Collision Sound Detection
The collision detection problem could be modeled as a binary hypothesis testing problem based

on the received audio signals. Let H 0 stand for the case where there is no collision and H1 stand

for a collision occurred in the surrounding environment. Certain measurements are needed to

distinguish the collision sound from some other environmental sound sources. These

measurements can be referred as the features extracted from audio signals. There are many

features like power, frequency, etc., that can be used to distinguish between the collision case

63

and the non-collision case. The most intuitive feature is the audio signal power P a at any

microphone, since the power is generally larger in the presence of a collision compared to the

case where there is only normal traffic. However, this may not be a good feature sometimes,

because it is possible that other sound sources have high power. Thus, more distinct features are

needed.

5.3.1 Audio Feature Extraction

Collision sounds have some important characteristics based on which our human ears could

easily distinguish them from non-crash sounds. It is found that the Mel Frequency Cepstral

Coefficients (MFCC) obtained through the MEL Frequency Cepstral Transform (MCT) provides

the most distinguishable features needed for collision sound identification. The frequency bands

in MCT are equally spaced on the non-linear Mel frequency scale which approximates the

behavior of human ear auditory system. The whole process of how to calculate MFCCs is shown

in Figure 5.11.

Figure 5.11 Block diagram of calculating MFCCs

64

The first step is to digitize received audio signals at the microphone array. Every time frame

of the signal using the short time Fourier transform and a hamming window of 100 milliseconds

and 50 milliseconds overlapping is processed in the experiment. This hamming window can be

expressed as,

w n() = 0.54− −0.46cos(2πn / (N 1))

All signals are sampled at 8 KHz at the microphone array and MFCCs are obtained by
N−1

calculating the FFT of the sampled signals: x t() is X i2 /nk N
k =∑ x e− π

n
n=0 .

The filter bank with P trian

⎧

gula

𝑘

r f

−

ilte

𝑓(
0

r

𝑝

s (

−

p P

1

=

)

1,,)

𝑘

is

<

 gi

𝑓

ve

(

n b

𝑝 −

y

1)

𝐻𝑃

⎪
(𝑘) =

⎪𝑓(𝑝) − 𝑓(𝑝 − 1)
𝑓(𝑝 − 1) ≤ 𝑘 ≤ 𝑓(𝑝)

⎨ 𝑓(𝑝 − 1) − 𝑘
𝑓(𝑝) ≤ 𝑘 ≤ 𝑓(𝑝⎪⎪

⎩
𝑓(𝑝 + 1) − 𝑓(𝑝)

+ 1)

The

0

 lowest and hig

𝑘

he

>

st f

𝑓

r

(

e

𝑝

que

+

nc

1)

ies of this trConditio ∑
P

n H kp () =1 is satisfied.
p=1

iangular filter

bank is fl and fh . Fs is the sampling frequency which is 8000 Hz. N is the value of the FFT

number. f p() is evenly distributed in the Mel scale as follows,

N −
= A−1[Af +l

p fh fl]
Fs P +1

given by A = 2595*log10 (1+ f / 700) , and thus

m power at the output of each triangular filter is


10 ∑

N−1
2 X k pH (k) , 0 < ≤p P

 k=0 

rm of the above P triangular filter outputs,

π − ≤

A A
f p)

h

g

(p) cos(n(p 1/ 2)P), 0<n P

it

o

fo

L

(

 A is

he logar

L p() = l

ine trans
P

where the Mel scale

A a−1() = 700(e(a /2595) −1) . T

MFCCs are the discrete cos

s n) =∑(
p=0

5.3.2 MFCC Based Neural Network Classification

65

The extracted MFCCs are to be used to distinguish the collision sound from other background

traffic sounds. This process can be achieved by classifying the signals into collision and non-

collision sounds by using a suitable classifier. The class for the background sounds, including

cars and trucks passing by, cars skidding and braking, sounds from industrial and construction

sites in the vicinity, etc., is denoted by H 0 and the class for the collision sounds is denoted by

H1 . Various recognition methods are available for the classification purpose. Due to its

popularity and efficiency, a back propagation (BP) neural network is adopted to identify the

collision sounds from the non-collision sounds in this study.

Since the Mel Frequency Cepstrum contains important information only in the first few

components, the remaining components can be neglected for audio processing in this case.

Specifically, the first 13 cepstrum coefficients are used for detection. They are fed into the neural

network for classification.

Figure 5.12 Block diagram of MFCCs based neural network classification

66

In the output layer of neural network, the output varies between 0 and 1. If the value is less

than the threshold 0.5, it indicates the selected frame is not a collision sound. Otherwise, it is

classified as collision. Since the collision sound may last a few consecutive time frames. If only

one frame is determined as the collision sound among a number of frames, it can be asserted that

the decision may be wrong. The identification of a collision can be obtained by observing

whether there are at least a number of consecutive frames that provide the same detection results.

If yes, then the detection decision can be made. The number of consecutive frames is set to be 5

in this research. The whole process of how to make a decision is shown in Figure 5.12. Based on

the output of the classifier, once a collision is detected, estimation of the location of the collision

is triggered.

5.3.3 Collision Detection Experiments

In the first set of experiments, the performance of the collision detection method is evaluated. A

neural network is trained by using 20 non-collision sounds and 10 collision sounds with some

specific collision features. The total number of MFCC feature vectors in the training files is

6310. They are divided into three parts: 4416 MFCC feature vectors (70% of data) are applied

for learning and training, 947 feature vectors (15% of data) are utilized for validation and the

remaining 947 MFCC feature vectors (15% of data) are applied for testing. A target class ‘0’

corresponds to a background sound and ‘1’ indicates a collision. The performance matrix of this

BP neural network is shown in Figure 5.13. The overall accuracy of this neural network given is

around 96%. The false alarm rate listed in all confusion matrices is around 1.0%, and the missed

detection rate is around 2.5%.

The BP neural network is tested with 40 various audio samples in which 20 are pure traffic

background sounds and the other 20 have collision sound in them. A collision decision is made

detected if the target class is ‘1’ for five consecutive time frames. It is noted that 19 out of 20

collision samples are correctly detected and all 20 background samples are accurately classified.

This gives us a 5% missed detection rate and a 0% probability of false alarm, as a whole system

renders an error rate of 2.5%. The test result is shown in Table 5.2.

Table 5.2 Test results analysis

Samples Background Collision Missed detection False alarm
40 20 20 5% 0%

67

Figure 5.13 Neural network confusion matrix

5.4 Audio/Video Fusion for Decision-Making
The accuracy of video-based accident detection is usually affected by occlusion, change in

illumination and limitations of segmentation and identification algorithms. On the other hand, in

audio-based accident detection, a loud noise may be due to a large cargo truck passing over a

bump or a near-accident that was eventually avoided after sudden application on the brakes.

These ambiguities cannot be eliminated by using one sensing modality alone. We propose to take

advantage of multiple, disparate sensing modalities wherein the fallacies of one sensor can be

compensated by the strengths of a different sensor. By fusing data from audio and video, we

expect to increase accuracy through collective reasoning.

Fusion of auditory and visual information will take place within each sensor node. Given that

a true accident occurs at a location [θ,z] where θ is the direction of the accident in the sensor-

node coordinate system and z is the height of the event in the image, the probability density

functions (pdf) of audio and video measurements can be represented by 𝑝𝑎(𝑟𝑚(𝑡)|[𝜃, 𝑧]),

m=1,…,M and 𝑝𝑣(𝑿(𝑡)|[𝜃, 𝑧]), respectively. However, the pdfs are generally difficult to obtain

68

because they also depend on the environment, background noise and algorithms used for

detection in each modality.

The posterior probability of an accident at [θ,z] based on all observed audio and video data

can be represented as 𝑝([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡),𝑿(𝑡)). The larger the probability value, the more

probable the accident at [θ,z] in the scene. If we have no prior knowledge of accident location

distributions, the prior probability p([θ,z]) can be assumed to be uniform. Using Bayes’ rule, it

can be shown that

𝑝([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡),𝑿(𝑡)) ∝ 𝑝_𝑎 ([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡)) 𝑝_𝑣 ([𝜃, 𝑧]|𝑿(𝑡))

Figure 5.14 Saliency detection. (a) Original image. (b) Detected regions of interest based on image data.
(c) Detected regions of interest from audio and video fusion

Figure 5.15 (a) Video domain pdf (b) Audio domain pdf (c) pdf after video/audio fusion

69

due to the conditional independence between audio and video data because they are from

different sensing mechanisms. This indicates that the final probability distribution of accidents is

proportional to the product of its distribution based on audio and video data respectively. The pdf

𝑝𝑎([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡)) can be obtained from the audio saliency map 𝑅(𝜃) through proper

normalization, i.e., 𝑝𝑎([𝜃, 𝑧]|𝑟1(𝑡), … , 𝑟𝑀(𝑡)) = 𝑅(𝜃) (𝐷 × ∫𝑅(𝜃)𝑑𝜃⁄), where D is the height

of the image. The pdf 𝑝𝑣([𝜃, 𝑧]|𝑿(𝑡)) can be obtained in a similar way by normalizing the video

saliency map. Our results are shown in Figures 5.14 and 5.15, which depict how fusing auditory

and visual information can lead to refined saliency maps.

5.5 Outdoor Experiments
We perform the experiments in an open area between two buildings. A rectangular wooden

frame is used to support four microphones forming an array. The inter-element spacing of the

array is 0.05m.

We use an NI CDAQ 9171 USB chassis, shown in Figure 5.16, to simultaneously connect

four microphones with a laptop. The microphones are omnidirectional and the highest supported

sampling rate is 51.2 KHz. Two USB-powered loud speakers are placed at one side of the

microphone array as the audio sources. After collecting certain length (e.g., 4 seconds) of

signals, our algorithm is used to estimate the DOAs of the sources. Figure 5.17 illustrates one

example of the experiment setup.

Figure 5.16 a NI cDAQ 9171 USB chassis and four microphones

70

Figure 5.17 One example of the experimental setup

The main noise source in outdoor environments is wind, which significantly affects the

performance of our algorithm. The parameter setting for experiments is summarized in Table 5.3.

Table 5.3 Parameter setting for outdoor experiments

Experimental Parameters Values

Number of Sources M 2

Source Categories Speech & Music

Source Length 4 Seconds

Number of Microphones N 4

Array Spacing d 0.05

Sampling Rate F s 51.2 KHz

Frame Length 1024

Frame Shift 1024

FFT Window Rectangular

As in the simulations, we set lower cutoff frequency and upper frequency, in which we

perform subspace method. Moreover, environmental noise occupies mainly low frequencies, as

shown in Figure 5.18. It is the spectrogram of the background noise during an experiment. It is

clear that most power is distributed below 1 KHz.

71

Figure 5.18 The spectrogram of the background noise

In outdoor environments, when signals consist mostly of low frequency components, the

algorithm fails to provide good estimates because of the low SNR and also the existence of the

cutoff frequency. When signals contain significant amount of high frequency components, the

estimates at these frequencies are good. Figure 5.19 shows the relations between DOA

estimation accuracy and original source spectrogram. Except for the low frequency part, the

estimated DOAs are more accurate at frequencies with high power and less accurate at low

frequency. This is clear in Figure 5.19 (left). The performance difference is because of the SNR

difference at different frequencies.

Figure 5.19 Estimated DOAs and original spectrograms for source1 (left) and source2 (right)

72

THIS PAGE IS INTENTIONALLY BLANK

73

CHAPTER 6

DEVELOPMENT OF A SMALL-SCALE TESTBED
As an important part of this testbed, it is desirable to develop autonomous driving RC cars that

can follow predefined trajectories so that different traffic scenarios can be realized. However,

controlling non-holonomic RC cars with low-accuracy steering angles and non-smooth velocity

is a challenging problem. We propose an efficient feedback control algorithm based on virtual

vehicles to allow the RC cars to track predefined trajectories. In Section I we present the

hardware setup of the testbed. Section II shows the control hardware design of the automated RC

car. Section III describes the RC car kinematic model, the tracking control algorithm, and the

control of multiple RC cars, respectively. Section IV shows the experimental results.

6.1 Hardware Setup of the Testbed

6.1.1 Overview

The scale-down testbed we developed has four main parts:

• An arena,

• An indoor localization system,

• Automated radio controlled (RC) cars,

• Roadside monitoring facilities.

To mimic typical traffic environments we build an arena with a wooden floor, mock

buildings and streets. An indoor localization system built from an optical motion capture system

is developed. Automated radio controlled cars with both autonomous driving and human driving

capability are developed. For the roadside monitoring facilities, an overhead fish-eye camera is

used and the associated advanced video processing algorithms are developed which include

image segmentation, object identification and tracking. The overall testbed is shown in Figure

6.1.

74

Figure 6.1 The developed testbed for experimental validation

6.1.2 Arena

We built an arena with a dimension of 16 feet by 12 feet, which can be used to create various

mock environments. The arena is based on a wooden floor on which streets, roads and

intersections can be set up. A carpet on top of the wooden floor is used to mimic concrete or

asphalt road surfaces. We can also place mock buildings, trees, and other decorations to make the

scene more realistic.

6.1.3 Indoor localization system

An indoor localization system is built up to localize RC cars in the simulated traffic environment.

The purpose of this system is to provide location feedback of the cars in order to control them to

move along predefined tracks. This indoor localization system can mimic the function of the

GPS system in the real world. This system is developed from an optical motion capture system

(Opti-Track) from NaturalPoint, Inc (http://www.naturalpoint.com/optitrack). There are 12

cameras mounted on tripods to cover the whole arena. The Opti-Track system has the capability

75

of capturing 100 frames per second, so that the location and orientation information can be

obtained in real time and with high accuracy (above 95 percent). The Opti-Track system tracks

each RC car via the markers (see Figure 6.2) mounted on top of the RC car. To simulate real

world GPS signals, we can down sample the data and even inject noise into the RC car location

and orientation estimates.

6.1.4 Automated RC cars

We have developed both autonomous driving and human driving RC cars. They are based on the

design of an automated RC car which will be explained in Section 6.2.

Figure 6.2 Two automated RC cars: (Top) Autonomous driving RC car (Bottom) Human driving RC car

For the autonomous driving RC car (see Figure 6.2-Top), four markers are mounted on top of

an automated RC car to build a rigid body so that the location and orientation of the car can be

tracked. A speaker is mounted on the back of the car for the purpose of mimicking collision

sound, which can be used in automated collision detection research. The tracking control

algorithm that allows the RC car to track predefined trajectories is developed in the computer,

and the control commands are sent to the RC car via the Xbee wireless communication.

For the human driving RC car (Figure 6.2-Bottom), a miniature wireless camera is mounted

on the hood of the RC car to provide visual inputs. It is used to observe the environment in front

76

of the car and send the video stream through wireless communication to the PC. The human

driver sits in front of a wheel stand and drives the RC car while he/she observes the video stream

on the monitor. We developed a program using the software development kit (SDK) of the wheel

stand to read the data from the steering wheel which include the wheel turning angle, brake, gas

pedal and gear shift status. Based on that, we send control commands, such as “move forward”,

“backward”, “turn left”, “turn right”, “speed up”, or “slow down”, through the Xbee wireless

communication to the automated RC car. Such a human driving setup can partially mimic the

human driving experience. The whole setup of this human driving system is shown in Figure 6.3.

The human driving RC car is also equipped with speakers to generate collision or other sounds to

mimic real traffic.

Figure 6.3 The setup for manually driving RC cars

6.1.5 Roadside monitoring facilities

A Mobotix Q24 fish-eye camera as shown in Figure 6.1 is mounted over the arena to serve as a

roadside monitoring facility. This camera is capable of providing different views simultaneously,

including a full 360 degree all-round view, hence it can cover the whole arena to monitor the

traffic underneath it. This camera uses an IP-based interface. The stream of live images from the

camera is obtained through a socket connection. The features of the camera (including

77

resolutions, frame rates, etc) can be easily modified by sending a web request. The zooming and

panning of the camera lenses can be controlled by virtual PTZ (Pan, Tilt, Zoom) functions. The

camera provides a highest resolution of 3M pixels and the color images are scalable from 160×

120 to 2048×1536. The highest frame rate is 30fps. This camera can be used in research

projects involving traffic monitoring, such as automated collision detection or anomaly detection

through visual surveillance.

6.2 Hardware Design of Automated RC Car
We used commercial off-the shelf RC cars with a scale of 1:14. The RC car comes with two DC

motors: a front DC motor for steering control and a rear DC motor for speed control. After

testing the front DC motor we find that it has very poor steering performance and cannot be used

in our project. Therefore the front DC motor is replaced by a servo motor which is mounted in

the RC car as shown in Figure 6.4. The overall hardware design of the automated RC car control

is shown in Figure 6.5. There are two major parts in the hardware design: an XBee wireless

module and a control board embedded in the RC car body.

Figure 6.4 The servo motor is mounted in the RC car

78

Figure 6.5 The hardware setup for the RC car control

XBee wireless module: This module is using small, low power radio based on the IEEE

802.15.4 standard and originally targeted for wireless personal area networks (WPANs). Due to

the limited size of our testbed, we find it is a good solution to wireless communication in our

testbed. This XBee wireless module has a data rate up to 250Kbps and can serve as the

communication channel between RC cars and between RC cars and roadside infrastructures. For

the purpose of automated RC car control, one XBee module is connected to the PC and another

is mounted on the control board as shown in Figure 6.5, enabling the wireless communication

between the PC and automated RC cars.

Control board: An embedded control board is developed to replace the original circuit board

inside the RC car. Its design is illustrated in Figure 6.6. The MCU (ATmega 162) in the middle

of Figure 6.6 functions as the control unit for the automated RC car. A speaker is used for

playing recorded sounds to mimic real world traffic sounds while a microphone is used to record

environmental sounds. Both the speaker and the microphone are driven by a voice record IC

(ISD 1700). The PWM output from the MCU is used to drive the front servo motor and the rear

DC motor so that the orientation and the velocity of the RC car can be controlled, respectively.

79

Figure 6.6 The function blocks of the control board

6.3 Autonomous RC Car Control
To create various traffic scenarios, we need control the autonomous RC cars so that they can

follow predefined trajectories. In this way, we can develop scripts that describe the desired

movement of the vehicles in the arena. For example, we can create a scenario of heads-on

collision between two cars exactly the way we want.

To control multiple RC cars simultaneously, the control algorithm is implemented using

multi-thread programming. The PC connects to a USB wireless adapter (XBee) for

communicating with the RC cars. The architecture of the multi-car control program is shown in

Figure 6.7. The controller for each RC car is implemented independently in a separate thread.

These threads can also realize inter-vehicle communication.

The problem of controlling a non-holonomic vehicle is well studied [25-28], but controlling a

nonholonomic vehicle with low accuracy and non-smooth velocity is a challenging problem. In

this section, we first build a model of the RC car, then focus on developing efficient control

algorithms for the RC car to track a predefined trajectory.

80

Figure 6.7 The architecture of the multi-car control program

6.3.1 RC Car Model

As we know most existing models of non-holonomic vehicles [25-27] are usually described as:

�
𝑥̇ = 𝑣𝑐𝑜𝑠(Ψ)
𝑦̇ = 𝑣𝑠𝑖𝑛(Ψ)

Ψ̇ = 𝜔

where Ψ is the orientation angle of the vehicle (see Figure 6.8), and ω is the angular velocity.

The model stated above is simple and does not consider the actual constraints on the range of

steering angle and the sliding angle which reflects the sliding errors between the center point of

the car and the center point of the front axial.

Since the RC car has low accuracy on steering we model it as:

�
𝑥̇ = 𝑣𝑐𝑜𝑠(Ψ + 𝜃 + 𝛽)
𝑦̇ = 𝑣𝑠𝑖𝑛(Ψ + 𝜃 + 𝛽)
Ψ̇ = 𝜔

where θ is the steering angle of the front wheels (see Figure 6.8), and β is the sliding angle that is

obtained based on the center point of the car and the velocity vector v. The β angle is computed

as β = Ψc − Ψ, here Ψc is the heading of the vehicle at the center point.

81

Figure 6.8 Illustration of RC car tracking the virtual vehicle moving in a predefined trajectory

6.3.2 RC car control algorithm

In order to let the RC car track a predefined trajectory we use a virtual vehicle based approach.

The virtual vehicle is a reference point that is moving on the path we want the RC car to follow.

The virtual vehicle, s(t), is designed to move along the path with xd = p(s) and yd = q(s). In order

to track the virtual vehicle, two constraints are considered in the following two inequalities,

which are related to the difference between the actual heading and the desired heading of the RC

car, and the distance between the actual and the virtual vehicle, respectively.

𝑙𝑖𝑚(|Ψ(𝑡) −Ψ𝑑(𝑡)|)𝑡→∞ ≤ 𝑑Ψ

here Ψd is the desired angle, dΨ is a small angle threshold.

𝑙𝑖𝑚�𝜌(𝑡)�
𝑡→∞

≤ 𝑑𝜌

here dρ is a small distance threshold. ρ(t) is the Euclidean distance between the RC car and the

virtual vehicle (see Figure 6.8). It is computed as

𝜌(𝑡) = �Δ𝑥2 + Δ𝑦2

here Δx = xd − x and Δy = yd − y.

In order to handle the first equality, the steering angle control for the RC car is based on the

proportional- derivative control (PD control) as follows:

𝜃(𝑡) = −𝑘𝑝[Ψ(𝑡) −Ψ𝑑(𝑡)] − 𝑘𝑑�Ψ̇(𝑡) − Ψ̇𝑑(𝑡)�

82

here kp and kd are positive constants.

As mentioned before, although we replaced the front DC motor by a servo motor to obtain a

controllable orientation and wider steering angles (20 degree), the left and right steering angles

are not the same because the mechanical steering part is not rigid. Additionally, the velocity of

the RC car is not smooth. The low-accuracy steering angle of the RC car is illustrated in Figure

6.9. In this model, since the front wheels mounted on the car are not stable, the left steering angle

range (Figure 6.9, Up) is different from the right one (Figure 6.9, Down). Specifically, in our

experiment we use a RC car which has 𝜃𝐿𝑚𝑎𝑥 between 22 degree and 27 degree and

𝜃𝑅𝑚𝑎𝑥 between 15 degree and 20 degree. This difference on the left and right steering angle is one

of the reasons that make the car not able to track the predefined trajectories when applying any

traditional tracking control algorithm.

Based on the above analysis, in order to handle the second inequality the parameter γ is

introduced [29, 30]

𝜌̇ − 𝑑̇𝜌 = −𝛾�𝜌 − 𝑑𝜌�

here γ is a positive constant. From the relation between ρ(t) with Δx and Δy, we can obtain:

𝜌̇ =
1

�Δ𝑥2 + Δ𝑦2
(Δ𝑥Δ𝑥̇ + Δ𝑦Δ𝑦̇)

=
1
𝜌

[Δ𝑥(𝑥̇𝑑 − 𝑥̇) − Δ𝑦(𝑦̇𝑑 − 𝑦̇)]

Here 𝑥̇𝑑 = 𝑝̇(𝑠)𝑠̇ and 𝑦̇𝑑 = 𝑞̇(𝑠)𝑠̇.

83

Figure 6.9 Low accuracy steering angle of the RC car. The left steering angle range is different from the
right one

Notice that dρ is a constant, 𝑑̇𝜌 = 0, we have

1
𝜌
𝑠̇�Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠)� =

1
𝜌

(Δ𝑥𝑥̇ + Δ𝑦𝑦̇) − 𝛾�𝜌 − 𝑑𝜌�

or,

𝑠̇ =
1

Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠) �
(Δ𝑥𝑥̇ + Δ𝑦𝑦̇) − 𝛾�𝜌 − 𝑑𝜌��

From the above equation, it is easy to see that if Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠) = 0 then 𝑠̇ → ∞, or the

car cannot track the virtual vehicle. In order to have Δ𝑥𝑝̇(𝑠) + Δ𝑦𝑞̇(𝑠) ≠ 0, the car should stay

close to and behind the virtual vehicle. From this analysis we should make the virtual vehicle

move with constant velocity at initial time when the car is far from it. This means that we need to

have s(t) = s(t − 1) + c (c is a positive constant) if t<tthreshold. The whole tracking control

algorithm is shown in the Algorithm 1.

84

Algorithm 1: The virtual vehicle tracking algorithm

Initialization phase:

- Create a trajectory of the virtual vehicle that the RC car wants to track.

- Initialize parameters: v, kp, kd,

m

𝑑 𝑠 .

Imple entation phase:

𝜌, 𝛾, 𝑠, ,Δ𝑡

If t<tthreshold then

 Let the virtual vehicle move with constant velocity

(to relax the assumption ()

t

()

s()=s(t-

)

1)+c,

 here, c is a positive const

Δ

a

𝑥

nt

𝑝

.

𝑠 + Δ𝑦𝑞 𝑠 = 0

else

- Compute the veloci

𝑠

ty

=

 of

Δ

 t

𝑥

he

𝑝(

 v

𝑠

ir

)

tu
1
+

a

Δ

l v

m e the steer

𝑦

eh

- Co put ing angle for the R

𝑞

C

(

ic

𝑠)

le

�

:

(

 car:

Δ𝑥𝑥 + Δ𝑦𝑦) − 𝛾�𝜌 − 𝑑𝜌��

- Update the position of

𝜃(𝑡)

 t

=

he vi

−𝑘

r

𝑝

tua

[Ψ

l ve

(𝑡)

hi

−

cl

Ψ

e b

𝑑(

a

𝑡

s

)

e

]

d on

− 𝑘

 i

𝑑

t

�

s

Ψ

 ve

(𝑡) −Ψ𝑑(𝑡)�

end

𝑠(𝑡) = 𝑠(𝑡 − 1) + 𝑠Δ𝑡

locity :

𝑠

6.4 Experimental Results
In this section we test our proposed control algorithm for a single RC car, then we extend the test

to three RC cars based on multi-thread programming.

The parameters for RC control algorithm (Algorithm 1) are as follows: the desired distance

between the RC car and the virtual vehicle dρ is 300mm; the initial velocity of the virtual vehicle

is 0; the constants for the PD steering controller kp = 1, kd = 0.8; the constant γ for computing

the velocity of the virtual vehicle is 2; and other parameters are v = 67 and Δt = 0.00056. The

parameters of the virtual vehicle moving in a circle are as follows: [x, y] = [Rcos(s), Rsin(s)]

with its radius R = 1500mm.

The tracking results of Algorithm 1 are shown in Figure 6.10. Namely, Figure 6.10 (left)

shows the RC car tracking the virtual vehicle which moves in the circle trajectory. Figure 6.10

̇

̇ ̇

̇
̇ ̇

̇ ̇

̇ ̇

̇

̇

85

(middle) shows the evaluation of the distance between the RC car and the virtual vehicle, and we

can see that this distance converges to the predefined value of dρ = 300mm. Hence, this result

meets our control goal on page 80. In addition, we evaluate the difference between the actual

heading of the RC car and the desired one as shown in Figure 6.10 (right). This result also

satisfies the requirement mentioned previously.

Figure 6.10 Trajectories of the RC car tracking the virtual vehicle moving in circle (Left), the distance
between the RC car and the virtual vehicle (Middle), and the difference between the actual heading of the

RC car and the desired one (Right)

We also evaluate Algorithm 1 for 3 RC cars running through an intersection as shown in

Figure 6.11. In this test we design the trajectories which are more complicated than the circle

trajectory. These trajectories have sharp changing points at the transition from circle trajectory to

line trajectory. Figure 6.11 (left) shows the three RC cars tracking the three virtual vehicles

which move in the mock streets with an intersection. Figure 6.11 (middle) shows the evaluations

of the distance between the RC cars and the virtual vehicles. Figure 6.11 (right) shows the

difference between the actual heading of the RC cars and the desired ones, respectively.

Observing these figures we can see that at these sharp turning points on the trajectories, the

tracking performance deteriorates.

86

Figure 6.11 Trajectories of the 3 RC cars tracking the virtual vehicles moving in desired

trajectories (Left), the distance between the RC car and the virtual vehicle (Middle), and the

difference between the actual heading of the RC cars and the desired ones (Right)

87

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary
The overarching goals of OKCARS are (1) to reduce the time required for proper assistance (not

just first responders) to arrive at the scene, and (2) to mitigate further accidents by forewarning

oncoming traffic. In this project, we investigated the limitations of current automatic incident

detection systems and developed an intelligent collision analysis and response system through

audio and video information collection from a traffic scene. We developed a prototype of

OKCARS by carefully selecting cost-effective hardware components and software platform.

Advanced audio/video-based collision detection algorithms and multisensory/multimodal fusion

algorithms were developed and integrated into the prototype. We validated the developed system

through comprehensive experiments on a small-scale testbed.

7.2 Findings and contributions
In this project, we have developed four SAV sensor nodes. Each of them consists of an

omnidirectional vision sensor, a microphone array and the associated data acquisition board. We

have two versions of this omnidirectional sensor: catadioptric camera and fish-eye camera. We

have developed the software to interface with the vision in both Windows and Linux OSes. The

microphone array consists of multiple microphones and a plastic ring which is light and

adjustable is radius. Two types of data acquisition boards have been tested. One is USB7202 and

the other is NI 9234. We also developed the software platform for the networking of multiple

audio/video sensor nodes. The software platform is based on the ROS (Robot Operating System),

which is an open source software framework for robots and sensors.

 The main finding on the video-analysis portion of this project is that it is possible to use very

low-level features for detecting and tracking moving objects in video. To save computation,

many of these low-level features can later be used for the accident-detection process. Our work

provides an intuitive, effective, and computationally efficient alternative to statistical tracking

techniques. The primary contribution is the development of an efficient algorithm for detecting

and tracking vehicles which operates by using low-level features and HVS-based modeling.

88

Secondary contributions include a significantly accelerated version of an image similarity

algorithm (MAD), and a feature-based extension, called F-MAD, which is more robust to motion

blur and shadows.

 We used collected audio information from microphone arrays to monitor traffic at

intersections. Audio source separation and localization simultaneously using microphone arrays,

and potential car accidents identification based on MFCC features and neural networks were

developed and implemented. We combined source separation, localization, and collision sound

detection into a unified system. Various aspects of the system were studied and tested through

simulations and experiments. The main contribution lies in that we did not assume any

knowledge of the signal mixing process, which reflects the situation encountered in practical

applications more accurately.

 We implemented a small-scale testbed (or platform) to conduct the experiments that can be

used to validate our proposed collision detection algorithms. Our testbed has four main parts: an

arena, an indoor localization system, automated radio controlled (RC) cars and roadside

monitoring facilities. First, to mimic traffic environments we built an arena with a wooden floor,

mock buildings and streets. Second, to facilitate feedback control for trajectory following, an

indoor localization system was set up to track the RC cars. Third, both autonomous driving RC

cars and human driving RC cars were developed, based on an automated RC car design. The

automated RC cars can receive control signals from a computer through an Xbee RF module and

control the front and rear wheels through motors. A new control algorithm was developed to

allow the RC cars to track predefined trajectories. Finally, the roadside monitoring system is a

collection of the smart audio visual (SAV) nodes which can collect both the audio and video data

from the collision scenario.

7.3 Implementation
The results of this project will advance and expand the strategic plan of the OTC in the area of

safety and security. One of the four key initiatives put forth in the OTC Strategic Plan is

“Enhancing roadway traffic, transit and infrastructure safety and security through improvement

of universal mobility, hardening assessment, emergency response preparedness, and

development of decision support tools for risk assessment and management.” We believe that the

outcomes of this project have great potential to further push this initiative. In addition, the results

89

of this research will have implications for emergencies and congestion, two of the nine areas

identified in the 2005 “Critical Issues in Transportation” report put forth by the U.S.

Transportation Research Board. The underlying technology developed in this project has

implications for other monitoring applications as well. Intelligent low-cost audio-visual sensors

with wireless communication capabilities can be used for applications such as wildfire/crop/

livestock monitoring thereby further promoting economic growth.

7.4 Recommendation for Future Work
In an effort to improve the tracking accuracy, we investigated the use of a statistical tracking

technique based on a Kalman filter. Although this technique increased the tracking accuracy, its

major limitation was its extremely high computational complexity. Similarly, although F-MAD

is more robust to motion blur and shadows, it is not yet suitable for real-time operation. Thus,

our future work will focus on developing simplified versions of these two algorithms which can

operate in real-time, yet still yield acceptable tracking performance.

 For most of the audio analysis, we assumed overdetermined situations, i.e., the number of

microphones used is more than the number of sound sources. In our future work, we intend to

explore the more challenging underdertermined audio processing system, which is able to handle

source separation and localization using fewer microphones. Moreover, we will continue to

investigate how to relax the stringent requirements on the placement and sampling rate of

microphones. To improve the system robustness, more studies are needed in harsher

environments at roadway intersections.

90

THIS PAGE IS INTENTIONALLY BLANK

91

REFERENCES
[1] W. M. Evanco, "The potential impact of rural mayday systems on vehicular crash

fatalities," Accident Analysis & Prevention, vol. 31, pp. 455-462, 1999.

[2] World Health Organization. (2007). Fact sheet: the top ten causes of death.

Available: www.who.int/mediacentre/factsheets/fs310.pdf

[3] U.S. Department of Transportation, "Traffic safety facts 2006," National Highway Traffic

Safety Administration, Ed., ed, 2006.

[4] C. L. Dudek, C. J. Messer, and N. B. Nuckles, "Incident detection on urban freeway,"

Transportation Research Board, Ed., ed, 1974, pp. 12-14.

[5] P. T. Martin and J. Perrin, "Automatic incident detection," University of Utah Traffic

Laboratory Report,2000.

[6] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, "Traffic monitoring and accident

detection at intersections," Intelligent Transportation Systems, IEEE Transactions on,

vol. 1, pp. 108-118, 2000.

[7] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis, "A survey of video processing techniques

for traffic applications," Image and Vision Computing, vol. 21, pp. 359-381, 2003.

[8] W. Kun-feng, J. Xingwu, and T. Shuming, "A survey of vision-based automatic incident

detection technology," in Vehicular Electronics and Safety, 2005. IEEE International

Conference on, 2005, pp. 290-295.

[9] H. Ikeda, Y. Kaneko, T. Matsuo, and K. Tsuji, "Abnormal incident detection system

employing image processing technology," in Intelligent Transportation Systems, 1999.

Proceedings. 1999 IEEE/IEEJ/JSAI International Conference on, 1999, pp. 748-752.

[10] H. Veeraraghavan, P. Schrater, and N. Papanikolopoulos, "Switching Kalman Filter-

based approach for tracking and event detection at traffic intersections," in Intelligent

Control, 2005. Proceedings of the 2005 IEEE International Symposium on, Mediterrean

Conference on Control and Automation, 2005, pp. 1167-1172.

[11] M. S. Shehata, J. Cai, W. M. Badawy, T. W. Burr, M. S. Pervez, R. J. Johannesson, and

A. Radmanesh, "Video-Based Automatic Incident Detection for Smart Roads: The

outdoor nnvironmental challenges regarding false alarms," Trans. Intell. Transport. Sys.,

vol. 9, pp. 349-360, 2008.

http://www.who.int/mediacentre/factsheets/fs310.pdf

92

[12] E. C. Larson and D. M. Chandler, "Most apparent distortion: full-reference image quality

assessment and the role of strategy," Journal of Electronic Imaging, vol. 19, pp. 011006-

011006, 2010.

[13] K. Yong-Kul and L. Dong-Young, "A traffic accident recording and reporting model at

intersections," Intelligent Transportation Systems, IEEE Transactions on, vol. 8, pp. 188-

194, 2007.

[14] C. T. Vu, T. D. Phan, and D. M. Chandler, "S3: A spectral and spatial measure of local

perceived sharpness in natural images," Image Processing, IEEE Transactions on, vol.

21, pp. 934-945, 2012.

[15] A. Jazayeri, H. Cai, J. Y. Zheng, and M. Tuceryan, "Vehicle detection and tracking in car

video based on motion model," Trans. Intell. Transport. Sys., vol. 12, pp. 583-595, 2011.

[16] H. Perez-Meana, Advances in Audio and Speech Signal Processing: Technologies and

Applications vol. Hershey, PA, USA: IGI Global, 2007.

[17] F. Asano, S. Hayamizu, T. Yamada, and S. Nakamura, "Speech enhancement based on

the subspace method," Speech and Audio Processing, IEEE Transactions on, vol. 8, pp.

497-507, 2000.

[18] P. Stoica and T. Soderstrom, "Statistical analysis of MUSIC and subspace rotation

estimates of sinusoidal frequencies," Trans. Sig. Proc., vol. 39, pp. 1836-1847, 1991.

[19] H. Akaike, "A new look at the statistical model identification," Automatic Control, IEEE

Transactions on, vol. 19, pp. 716-723, 1974.

[20] J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471,

1978.

[21] G. Schwarz, "Estimating the dimension of a model," Annals of Statistics, vol. 6, p. 4,

1978.

[22] M. Wax and T. Kailath, "Detection of signals by information theoretic criteria,"

Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 33, pp. 387-392,

1985.

[23] S. Winter, H. Sawada, and S. Makino, "Geometrical understanding of the PCA subspace

method for overdetermined blind source separation," in Acoustics, Speech, and Signal

Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on,

2003, pp. 769-72.

93

[24] E. Vincent, R. Gribonval, and C. Fevotte, "Performance measurement in blind audio

source separation," Audio, Speech, and Language Processing, IEEE Transactions on, vol.

14, pp. 1462-1469, 2006.

[25] G. Indiveri, "Kinematic time-invariant control of a 2D nonholonomic vehicle," in

Decision and Control, 1999. Proceedings of the 38th IEEE Conference on, 1999, pp.

2112-2117 vol.3.

[26] C. C. de Wit and O. J. Sordalen, "Exponential stabilization of mobile robots with

nonholonomic constraints," Automatic Control, IEEE Transactions on, vol. 37, pp. 1791-

1797, 1992.

[27] Y. Zhu and U. Ozguner, "Constrained model predictive control for nonholonomic vehicle

regulation," in Proceedings of the 17th World Congress The International Federation of

Automatic Control, Seoul, Korea, 2008.

[28] J. Cochran and M. Krstic, "Nonholonomic source seeking with tuning of angular

velocity," Automatic Control, IEEE Transactions on, vol. 54, pp. 717-731, 2009.

[29] M. Egerstedt, X. Hu, and A. Stotsky, "Control of mobile platforms using a virtual vehicle

approach," Automatic Control, IEEE Transactions on, vol. 46, pp. 1777-1782, 2001.

[30] S. V. Gusev and I. A. Makarov, "Stabilization of program motion of transport robot with

track laying chassis," Proceedings of LSU, vol. 1, 1989.

	TECHNICAL REPORT DOCUMENTATION PAGE
	EXECUTIVE SUMMARY
	CHAPTER 1
	INTRODUCTION
	1.1 Background and Objectives
	1.2 Main Contributions
	1.3 Report Organization

	CHAPTER 2
	LITERATURE REVIEW
	CHAPTER 3
	SYSTEM ARCHITECTURE AND HARDWARE SETUP
	3.1 Development of the Visual Sensor Node
	Figure 3.2 The catadioptric camera (left) and the fish-eye camera (right)
	3.1.1 Catadioptric Camera
	Figure 3.3 The ring area for undistortion of catadioptric camera
	Figure 3.4 Image from the camera after unwrapping

	3.1.2 Fish-eye Camera Q24

	3.2 Development of the Microphone Array
	Figure 3.5 The audio part of a prototype of the SAV node
	3.2.1 The USB-7202 DAQ
	3.2.2 Design of the Microphone Array
	3.2.3 Steps to Use the Microphone Array
	Table 3.1 Pins connection
	Figure 3.9 The audio part of the SAV node: the microphone arrays on a flexible ring

	3.4 Integration of the Smart Audio Visual Sensor Node
	Figure 3.10 The prototype of the vision/audio sensor node

	3.5 Communication

	Figure 3.1 The overall architecture of OKCARS
	Figure 3.6 The Block Diagram of the Microphone Array Platform
	Figure 3.7 Pins definition of DAQ and preamplifier unit
	Figure 3.8 The polarity of the microphone
	CHAPTER 4
	VIDEO BASED ACCIDENT ANALYSIS
	4.1 General Approach
	4.2 Vehicle Detection
	4.2.1 Background Subtraction
	4.2.2 Thresholding and Morphological Processing
	4.2.3 Connected-Component Labelings and Region Extraction

	4.3 Feature Extraction
	4.3.1 Bounding Box
	4.3.2 Area
	4.3.3 Centroid
	4.3.4 Orientation
	4.3.5 Luminance and Color
	4.3.6 Feature Vector

	4.4 Human Visual System (HVS) Model Analysis
	4.5 Vehicle Tracking
	4.5.1 Feature Distance
	4.5.2 Weighed Combination of Feature Distance and MAD analysis

	4.6 Computation of Vehicle Parameters
	4.6.1 Speed of the Vehicles
	4.6.2 Trajectory of the Vehicles

	4.7 Accident Detection System
	4.7.1 Variation in Speed of the Vehicles
	4.7.2 Variation in Area of the Vehicles
	4.7.3 Variation in Position of the Vehicles
	4.7.4 Variation in Orientation of the Vehicles
	4.7.5 Overall Accident Index
	4.7.6 Locating the Accident

	4.8 Improving Matching Robustness via F-MAD
	4.8.1 Lightness and Color Distance
	4.8.2 Contrast
	4.8.3 Edge Strength
	4.8.4 Sharpness
	4.8.5 Computation of F-MAD
	Figure 4.21 MAD vs. F-MAD tracking results. F-MAD is better able to handle shadows and motion blur

	4.9 Improving Tracking via Kalman Filtering

	Figure 4.1 Overview of the video analysis portion of the accident detection system
	Figure 4.2 Block diagram of the processing performed during the vehicle detection stage
	Figure 4.3 Left: Input frames. Middle: Static blank background. Right: Result of subtraction
	Figure 4.4 Thresholding and morphological processing are used to obtain a binary map of vehicle pixels
	Figure 4.5 Connected components labeling is used to segment the binary map and assign a unique label to each detected vehicle
	Figure 4.6 Vehicle regions are extracted from each frame via multiplication with the frame’s corresponding binary map.
	Figure 4.7 The centroid of each vehicle is estimated based on the detected vehicle regions
	Figure 4.9 The lightness and color of each vehicle is estimated via an RGB to CIELAB color-space conversion on each frame followed by averaging the L*, a*, and b* values within each vehicle region
	Figure 4.8 The orientation of each vehicle is estimated via ellipse-fitting on the detected vehicle regions
	Figure 4.10 Extracted vehicles from a particular frame and table of feature values
	Figure 4.11. Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for different vehicle comparisons—smaller values denote closer matches.
	Figure 4.12 Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for different vehicle comparisons—smaller values denote closer matches
	Figure 4.13 Overall measured d for matched vehicles in two consecutive frames
	Figure 4.14. Vehicle tracking across nine consecutive frames. The color of each rectangle denotes the same vehicle across different frames
	Figure 4.15. Vehicle trajectories are estimated by connecting the centroids of tracked vehicles across multiple frames.
	Figure 4.16 Flowchart of the Accident Detection Algorithm
	Figure 4.18. illustration of accident detection by identifying the change in area that occurs when two vehicles are detected as a single, combined vehicle
	Figure 4.17. Illustration of accident detection by identifying rapid changes in speeds
	Figure 4.20 Feature maps used in the F-MAD algorithm for determining vehicle matches
	Figure 4.22 Stages of the Kalman-filter-based tracking algorithm
	CHAPTER 5
	AUDIO BASED ACCIDENT ANALYSIS
	Figure 5.1 The diagram of the robust audio-based collision detection system
	5.1 Blind Source Separation and Localization
	Figure 5.2 Spatial configuration of sources and microphones
	5.1.1 Preprocessing
	5.1.2 Subspace Methods
	5.1.3 Final DOA Determination
	5.1.4 Related Issues
	Source Number Estimation
	Frequency Bin Selection
	Performance Measure

	5.1.5 Simulations
	Table 5.1 Parameter settings in simulations
	Source Spectrograms
	Source Number Estimation
	Eigenvalue based Method
	Information Theoretical Criteria

	Localization Performance
	Figure 5.6 MSE versus frequencies for different SNRs with frame length 256 samples using mixture of source1 and source3

	Frequency Bin Selection for DOA Estimation

	5.2 Fusion of Multiple Microphone Arrays
	Figure 5.9 DOA estimation error vs. the number of iterations
	Figure 5.10 Source location estimation error vs. the number of iterations

	5.3 Collision Sound Detection
	5.3.1 Audio Feature Extraction
	Figure 5.11 Block diagram of calculating MFCCs

	5.3.2 MFCC Based Neural Network Classification
	Figure 5.12 Block diagram of MFCCs based neural network classification

	5.3.3 Collision Detection Experiments
	Table 5.2 Test results analysis
	Figure 5.13 Neural network confusion matrix

	5.4 Audio/Video Fusion for Decision-Making
	5.5 Outdoor Experiments
	Figure 5.16 a NI cDAQ 9171 USB chassis and four microphones
	Figure 5.17 One example of the experimental setup
	Table 5.3 Parameter setting for outdoor experiments

	Figure 5.18 The spectrogram of the background noise
	Figure 5.19 Estimated DOAs and original spectrograms for source1 (left) and source2 (right)
	THIS PAGE IS INTENTIONALLY BLANK

	Figure 5.15 (a) Video domain pdf. (b) Audio domain pdf. (c) pdf after video/audio fusion
	Figure 5.14 Saliency detection. (a) Original image. (b) Detected regions of interest based on image data. (c) Detected regions of interest from audio and video fusion
	CHAPTER 6
	DEVELOPMENT OF A SMALL-SCALE TESTBED
	6.1 Hardware Setup of the Testbed
	6.1.1 Overview
	Figure 6.1 The developed testbed for experimental validation

	6.1.2 Arena
	6.1.3 Indoor localization system
	6.1.4 Automated RC cars
	Figure 6.2 Two automated RC cars: (Top) Autonomous driving RC car. (Bottom) Human driving RC car
	Figure 6.3 The setup for manually driving RC cars

	6.1.5 Roadside monitoring facilities

	6.2 Hardware Design of Automated RC Car
	Figure 6.4 The servo motor is mounted in the RC car
	Figure 6.5 The hardware setup for the RC car control
	Figure 6.6 The function blocks of the control board

	6.3 Autonomous RC Car Control
	Figure 6.7 The architecture of the multi-car control program
	6.3.1 RC Car Model
	Figure 6.8 Illustration of RC car tracking the virtual vehicle moving in a predefined trajectory

	6.3.2 RC car control algorithm
	Figure 6.9 Low accuracy steering angle of the RC car. The left steering angle range is different from the right one

	6.4 Experimental Results
	Figure 6.10 Trajectories of the RC car tracking the virtual vehicle moving in circle (Left), the distance between the RC car and the virtual vehicle (Middle), and the difference between the actual heading of the RC car and the desired one (Right)

	CHAPTER 7
	CONCLUSIONS AND RECOMMENDATIONS
	7.1 Summary
	7.2 Findings and contributions
	7.3 Implementation
	7.4 Recommendation for Future Work

	REFERENCES
	OTCREOS9.1-15-Final_revised June 18 page 54 pdf.pdf
	TECHNICAL REPORT DOCUMENTATION PAGE
	EXECUTIVE SUMMARY
	CHAPTER 1
	INTRODUCTION
	1.1 Background and Objectives
	1.2 Main Contributions
	1.3 Report Organization

	CHAPTER 2
	LITERATURE REVIEW
	CHAPTER 3
	SYSTEM ARCHITECTURE AND HARDWARE SETUP
	3.1 Development of the Visual Sensor Node
	Figure 3.2 The catadioptric camera (left) and the fish-eye camera (right)
	3.1.1 Catadioptric Camera
	Figure 3.3 The ring area for undistortion of catadioptric camera
	Figure 3.4 Image from the camera after unwrapping

	3.1.2 Fish-eye Camera Q24

	3.2 Development of the Microphone Array
	Figure 3.5 The audio part of a prototype of the SAV node
	3.2.1 The USB-7202 DAQ
	3.2.2 Design of the Microphone Array
	3.2.3 Steps to Use the Microphone Array
	Table 3.1 Pins connection
	Figure 3.9 The audio part of the SAV node: the microphone arrays on a flexible ring

	3.4 Integration of the Smart Audio Visual Sensor Node
	Figure 3.10 The prototype of the vision/audio sensor node

	3.5 Communication

	Figure 3.1 The overall architecture of OKCARS
	Figure 3.6 The Block Diagram of the Microphone Array Platform
	Figure 3.7 Pins definition of DAQ and preamplifier unit
	Figure 3.8 The polarity of the microphone
	CHAPTER 4
	VIDEO BASED ACCIDENT ANALYSIS
	4.1 General Approach
	4.2 Vehicle Detection
	4.2.1 Background Subtraction
	4.2.2 Thresholding and Morphological Processing
	4.2.3 Connected-Component Labelings and Region Extraction

	4.3 Feature Extraction
	4.3.1 Bounding Box
	4.3.2 Area
	4.3.3 Centroid
	4.3.4 Orientation
	4.3.5 Luminance and Color
	4.3.6 Feature Vector

	4.4 Human Visual System (HVS) Model Analysis
	4.5 Vehicle Tracking
	4.5.1 Feature Distance
	4.5.2 Weighed Combination of Feature Distance and MAD analysis

	4.6 Computation of Vehicle Parameters
	4.6.1 Speed of the Vehicles
	4.6.2 Trajectory of the Vehicles

	4.7 Accident Detection System
	4.7.1 Variation in Speed of the Vehicles
	4.7.2 Variation in Area of the Vehicles
	4.7.3 Variation in Position of the Vehicles
	4.7.4 Variation in Orientation of the Vehicles
	4.7.5 Overall Accident Index
	4.7.6 Locating the Accident

	4.8 Improving Matching Robustness via F-MAD
	4.8.1 Lightness and Color Distance
	4.8.2 Contrast
	4.8.3 Edge Strength
	4.8.4 Sharpness
	4.8.5 Computation of F-MAD
	Figure 4.19 Scatterplot of ground-truth ratings of visual dissimilarity vs. F-MAD’s predictions on image’s from the CSIQ image database

	4.8.6 Results of F-MAD on Vehicle Tracking
	Figure 4.21 MAD vs. F-MAD tracking results. F-MAD is better able to handle shadows and motion blur

	4.9 Improving Tracking via Kalman Filtering

	Figure 4.1 Overview of the video analysis portion of the accident detection system
	Figure 4.2 Block diagram of the processing performed during the vehicle detection stage
	Figure 4.3 Left: Input frames. Middle: Static blank background. Right: Result of subtraction
	Figure 4.4 Thresholding and morphological processing are used to obtain a binary map of vehicle pixels
	Figure 4.5 Connected components labeling is used to segment the binary map and assign a unique label to each detected vehicle
	Figure 4.6 Vehicle regions are extracted from each frame via multiplication with the frame’s corresponding binary map.
	Figure 4.7 The centroid of each vehicle is estimated based on the detected vehicle regions
	Figure 4.9 The lightness and color of each vehicle is estimated via an RGB to CIELAB color-space conversion on each frame followed by averaging the L*, a*, and b* values within each vehicle region
	Figure 4.8 The orientation of each vehicle is estimated via ellipse-fitting on the detected vehicle regions
	Figure 4.10 Extracted vehicles from a particular frame and table of feature values
	Figure 4.11. Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for different vehicle comparisons—smaller values denote closer matches.
	Figure 4.12 Example of HVS model analysis: (a) Frame at time t. (b) Frame at time t+1 (c) MAD index for different vehicle comparisons—smaller values denote closer matches
	Figure 4.13 Overall measured d for matched vehicles in two consecutive frames
	Figure 4.14. Vehicle tracking across nine consecutive frames. The color of each rectangle denotes the same vehicle across different frames
	Figure 4.15. Vehicle trajectories are estimated by connecting the centroids of tracked vehicles across multiple frames.
	Figure 4.16 Flowchart of the Accident Detection Algorithm
	Figure 4.18. illustration of accident detection by identifying the change in area that occurs when two vehicles are detected as a single, combined vehicle
	Figure 4.17. Illustration of accident detection by identifying rapid changes in speeds
	Figure 4.20 Feature maps used in the F-MAD algorithm for determining vehicle matches
	Figure 4.22 Stages of the Kalman-filter-based tracking algorithm
	CHAPTER 5
	AUDIO BASED ACCIDENT ANALYSIS
	Figure 5.1 The diagram of the robust audio-based collision detection system
	5.1 Blind Source Separation and Localization
	Figure 5.2 Spatial configuration of sources and microphones
	5.1.1 Preprocessing
	5.1.2 Subspace Methods
	5.1.3 Final DOA Determination
	5.1.4 Related Issues
	Source Number Estimation
	Frequency Bin Selection
	Performance Measure

	5.1.5 Simulations
	Table 5.1 Parameter settings in simulations
	Source Spectrograms
	Source Number Estimation
	Eigenvalue based Method
	Information Theoretical Criteria

	Localization Performance
	Figure 5.6 MSE versus frequencies for different SNRs with frame length 256 samples using mixture of source1 and source3

	Frequency Bin Selection for DOA Estimation

	5.2 Fusion of Multiple Microphone Arrays
	Figure 5.9 DOA estimation error vs. the number of iterations
	Figure 5.10 Source location estimation error vs. the number of iterations

	5.3 Collision Sound Detection
	5.3.1 Audio Feature Extraction
	Figure 5.11 Block diagram of calculating MFCCs

	5.3.2 MFCC Based Neural Network Classification
	Figure 5.12 Block diagram of MFCCs based neural network classification

	5.3.3 Collision Detection Experiments
	Table 5.2 Test results analysis
	Figure 5.13 Neural network confusion matrix

	5.4 Audio/Video Fusion for Decision-Making
	5.5 Outdoor Experiments
	Figure 5.16 a NI cDAQ 9171 USB chassis and four microphones
	Figure 5.17 One example of the experimental setup
	Table 5.3 Parameter setting for outdoor experiments

	Figure 5.18 The spectrogram of the background noise
	Figure 5.19 Estimated DOAs and original spectrograms for source1 (left) and source2 (right)
	THIS PAGE IS INTENTIONALLY BLANK

	Figure 5.15 (a) Video domain pdf. (b) Audio domain pdf. (c) pdf after video/audio fusion
	Figure 5.14 Saliency detection. (a) Original image. (b) Detected regions of interest based on image data. (c) Detected regions of interest from audio and video fusion
	CHAPTER 6
	DEVELOPMENT OF A SMALL-SCALE TESTBED
	6.1 Hardware Setup of the Testbed
	6.1.1 Overview
	Figure 6.1 The developed testbed for experimental validation

	6.1.2 Arena
	6.1.3 Indoor localization system
	6.1.4 Automated RC cars
	Figure 6.2 Two automated RC cars: (Top) Autonomous driving RC car. (Bottom) Human driving RC car
	Figure 6.3 The setup for manually driving RC cars

	6.1.5 Roadside monitoring facilities

	6.2 Hardware Design of Automated RC Car
	Figure 6.4 The servo motor is mounted in the RC car
	Figure 6.5 The hardware setup for the RC car control
	Figure 6.6 The function blocks of the control board

	6.3 Autonomous RC Car Control
	Figure 6.7 The architecture of the multi-car control program
	6.3.1 RC Car Model
	Figure 6.8 Illustration of RC car tracking the virtual vehicle moving in a predefined trajectory

	6.3.2 RC car control algorithm
	Figure 6.9 Low accuracy steering angle of the RC car. The left steering angle range is different from the right one

	6.4 Experimental Results
	Figure 6.10 Trajectories of the RC car tracking the virtual vehicle moving in circle (Left), the distance between the RC car and the virtual vehicle (Middle), and the difference between the actual heading of the RC car and the desired one (Right)

	CHAPTER 7
	CONCLUSIONS AND RECOMMENDATIONS
	7.1 Summary
	7.2 Findings and contributions
	7.3 Implementation
	7.4 Recommendation for Future Work

	REFERENCES

	OTCREOS9.1-15-F Cover 2.pdf
	Economic Enhancement through Infrastructure Stewardship

	OKCARS: Oklahoma Collision Analysis and Response System

	Qi Cheng, Ph.D.

	Damon Chandler, Ph.D.

	Weihua Sheng, Ph.D.

